BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

862 related articles for article (PubMed ID: 27618862)

  • 21. Rational modification of tricarboxylic acid cycle for improving L-lysine production in Corynebacterium glutamicum.
    Xu JZ; Wu ZH; Gao SJ; Zhang W
    Microb Cell Fact; 2018 Jul; 17(1):105. PubMed ID: 29981572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY; Lee J; Lee SY
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources.
    Pérez-García F; Ziert C; Risse JM; Wendisch VF
    J Biotechnol; 2017 Sep; 258():59-68. PubMed ID: 28478080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased glutarate production by blocking the glutaryl-CoA dehydrogenation pathway and a catabolic pathway involving L-2-hydroxyglutarate.
    Zhang M; Gao C; Guo X; Guo S; Kang Z; Xiao D; Yan J; Tao F; Zhang W; Dong W; Liu P; Yang C; Ma C; Xu P
    Nat Commun; 2018 May; 9(1):2114. PubMed ID: 29844506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources.
    Jorge JMP; Pérez-García F; Wendisch VF
    Bioresour Technol; 2017 Dec; 245(Pt B):1701-1709. PubMed ID: 28522202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient whole-cell catalysis for 5-aminovalerate production from L-lysine by using engineered Escherichia coli with ethanol pretreatment.
    Cheng J; Luo Q; Duan H; Peng H; Zhang Y; Hu J; Lu Y
    Sci Rep; 2020 Jan; 10(1):990. PubMed ID: 31969619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bio-based production of chemicals, materials and fuels -Corynebacterium glutamicum as versatile cell factory.
    Becker J; Wittmann C
    Curr Opin Biotechnol; 2012 Aug; 23(4):631-40. PubMed ID: 22138494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine.
    Becker J; Schäfer R; Kohlstedt M; Harder BJ; Borchert NS; Stöveken N; Bremer E; Wittmann C
    Microb Cell Fact; 2013 Nov; 12():110. PubMed ID: 24228689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering a Lysine-ON Riboswitch for Metabolic Control of Lysine Production in Corynebacterium glutamicum.
    Zhou LB; Zeng AP
    ACS Synth Biol; 2015 Dec; 4(12):1335-40. PubMed ID: 26300047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
    Zhao N; Qian L; Luo G; Zheng S
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9517-9529. PubMed ID: 30218378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
    Matano C; Uhde A; Youn JW; Maeda T; Clermont L; Marin K; Krämer R; Wendisch VF; Seibold GM
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5633-43. PubMed ID: 24668244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum.
    Lubitz D; Jorge JM; Pérez-García F; Taniguchi H; Wendisch VF
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8465-74. PubMed ID: 27350619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate.
    Buchholz J; Schwentner A; Brunnenkan B; Gabris C; Grimm S; Gerstmeir R; Takors R; Eikmanns BJ; Blombach B
    Appl Environ Microbiol; 2013 Sep; 79(18):5566-75. PubMed ID: 23835179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system.
    Schneider J; Eberhardt D; Wendisch VF
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):169-78. PubMed ID: 22370950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Efficient Production of l-Histidine from Glucose by Metabolically Engineered
    Wu H; Tian D; Fan X; Fan W; Zhang Y; Jiang S; Wen C; Ma Q; Chen N; Xie X
    ACS Synth Biol; 2020 Jul; 9(7):1813-1822. PubMed ID: 32470291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process.
    Joo JC; Oh YH; Yu JH; Hyun SM; Khang TU; Kang KH; Song BK; Park K; Oh MK; Lee SY; Park SJ
    Bioresour Technol; 2017 Dec; 245(Pt B):1692-1700. PubMed ID: 28579174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production.
    Becker J; Zelder O; Häfner S; Schröder H; Wittmann C
    Metab Eng; 2011 Mar; 13(2):159-68. PubMed ID: 21241816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production.
    Zhang B; Yu M; Zhou Y; Li Y; Ye BC
    Microb Cell Fact; 2017 Sep; 16(1):158. PubMed ID: 28938890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level.
    Li Y; Cong H; Liu B; Song J; Sun X; Zhang J; Yang Q
    Antonie Van Leeuwenhoek; 2016 Sep; 109(9):1185-97. PubMed ID: 27255137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Equilibrium of the intracellular redox state for improving cell growth and L-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping.
    Xu JZ; Ruan HZ; Chen XL; Zhang F; Zhang W
    Microb Cell Fact; 2019 Apr; 18(1):65. PubMed ID: 30943966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.