These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27619067)

  • 21. Optimizing the affinity and specificity of ligand binding with the inclusion of solvation effect.
    Yan Z; Wang J
    Proteins; 2015 Sep; 83(9):1632-42. PubMed ID: 26111900
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis and prediction of carbohydrate binding sites.
    Taroni C; Jones S; Thornton JM
    Protein Eng; 2000 Feb; 13(2):89-98. PubMed ID: 10708647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ligand binding site similarity identification based on chemical and geometric similarity.
    Tu H; Shi T
    Protein J; 2013 Jun; 32(5):373-85. PubMed ID: 23700221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting dihedral angle probability distributions for protein coil residues from primary sequence using neural networks.
    Helles G; Fonseca R
    BMC Bioinformatics; 2009 Oct; 10():338. PubMed ID: 19835576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design.
    Liang J; Edelsbrunner H; Woodward C
    Protein Sci; 1998 Sep; 7(9):1884-97. PubMed ID: 9761470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ligand binding to protein-binding pockets with wet and dry regions.
    Wang L; Berne BJ; Friesner RA
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1326-30. PubMed ID: 21205906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MIAX: a new paradigm for modeling biomacromolecular interactions and complex formation in condensed phases.
    Del Carpio-Muñoz CA; Ichiishi E; Yoshimori A; Yoshikawa T
    Proteins; 2002 Sep; 48(4):696-732. PubMed ID: 12211037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SDOVS: a solvent dipole ordering-based method for virtual screening.
    Murata K; Nagata N; Nakanishi I; Kitaura K
    J Comput Chem; 2010 Nov; 31(15):2714-22. PubMed ID: 20839298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of ligand-binding residue predictions in CASP9.
    Schmidt T; Haas J; Gallo Cassarino T; Schwede T
    Proteins; 2011; 79 Suppl 10(Suppl 10):126-36. PubMed ID: 21987472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of protein binding sites by computational solvent mapping.
    Hall DR; Kozakov D; Vajda S
    Methods Mol Biol; 2012; 819():13-27. PubMed ID: 22183527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of protein accessible surface areas by support vector regression.
    Yuan Z; Huang B
    Proteins; 2004 Nov; 57(3):558-64. PubMed ID: 15382233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting RNA-binding sites of proteins using support vector machines and evolutionary information.
    Cheng CW; Su EC; Hwang JK; Sung TY; Hsu WL
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S6. PubMed ID: 19091029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward prediction of functional protein pockets using blind docking and pocket search algorithms.
    Hetényi C; van der Spoel D
    Protein Sci; 2011 May; 20(5):880-93. PubMed ID: 21413095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the composition of protein-ligand binding sites on a large scale.
    Khazanov NA; Carlson HA
    PLoS Comput Biol; 2013; 9(11):e1003321. PubMed ID: 24277997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure.
    Capra JA; Laskowski RA; Thornton JM; Singh M; Funkhouser TA
    PLoS Comput Biol; 2009 Dec; 5(12):e1000585. PubMed ID: 19997483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational methods for identification of functional residues in protein structures.
    Xin F; Radivojac P
    Curr Protein Pept Sci; 2011 Sep; 12(6):456-69. PubMed ID: 21787297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FURSMASA: a new approach to rapid scoring functions that uses a MD-averaged potential energy grid and a solvent-accessible surface area term with parameters GA fit to experimental data.
    Pearlman DA; Rao BG; Charifson P
    Proteins; 2008 May; 71(3):1519-38. PubMed ID: 18300249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrophilic aromatic residue and in silico structure for carbohydrate binding module.
    Chou WY; Pai TW; Jiang TY; Chou WI; Tang CY; Chang MD
    PLoS One; 2011; 6(9):e24814. PubMed ID: 21966371
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein Structure and Function Prediction Using I-TASSER.
    Yang J; Zhang Y
    Curr Protoc Bioinformatics; 2015 Dec; 52():5.8.1-5.8.15. PubMed ID: 26678386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction.
    Hoffmann B; Zaslavskiy M; Vert JP; Stoven V
    BMC Bioinformatics; 2010 Feb; 11():99. PubMed ID: 20175916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.