These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27619376)

  • 1. Use of Zea mays L. in phytoremediation of trichloroethylene.
    Moccia E; Intiso A; Cicatelli A; Proto A; Guarino F; Iannece P; Castiglione S; Rossi F
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11053-11060. PubMed ID: 27619376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: I. DECIDUOUS TREES.
    Strycharz S; Newman L
    Int J Phytoremediation; 2009 Feb; 11(2):150-170. PubMed ID: 28133997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: II. CONIFEROUS TREES.
    Strycharz S; Newman L
    Int J Phytoremediation; 2009 Feb; 11(2):171-186. PubMed ID: 28133996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium.
    Hechmi N; Ben Aissa N; Abdennaceur H; Jedidi N
    Int J Phytoremediation; 2013; 15(7):703-13. PubMed ID: 23819269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Betula pendula: A Promising Candidate for Phytoremediation of TCE in Northern Climates.
    Lewis J; Qvarfort U; Sjöström J
    Int J Phytoremediation; 2015; 17(1-6):9-15. PubMed ID: 25174420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of Hydrocarbons by Maize (Zea mays L.) in Remediation of Soils Contaminated with Crude Oil.
    Liao C; Xu W; Lu G; Liang X; Guo C; Yang C; Dang Z
    Int J Phytoremediation; 2015; 17(7):693-700. PubMed ID: 25976883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transpiration and metabolisation of TCE by willow plants - a pot experiment.
    Schöftner P; Watzinger A; Holzknecht P; Wimmer B; Reichenauer TG
    Int J Phytoremediation; 2016; 18(7):686-92. PubMed ID: 26684839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Soil Aging on the Phytoremediation Potential of Zea mays in Chromium and Benzo[a]Pyrene Contaminated Soils.
    Chigbo C
    Bull Environ Contam Toxicol; 2015 Jun; 94(6):777-82. PubMed ID: 25917846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of trichloroethylene with hybrid poplars.
    Gordon M; Choe N; Duffy J; Ekuan G; Heilman P; Muiznieks I; Ruszaj M; Shurtleff BB; Strand S; Wilmoth J; Newman LA
    Environ Health Perspect; 1998 Aug; 106 Suppl 4(Suppl 4):1001-4. PubMed ID: 9703485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation.
    Kao CM; Chen SC; Su MC
    Chemosphere; 2001 Aug; 44(5):925-34. PubMed ID: 11513425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Potential of the Ni-Resistant TCE-Degrading Pseudomonas putida W619-TCE to Reduce Phytotoxicity and Improve Phytoremediation Efficiency of Poplar Cuttings on A Ni-TCE Co-Contamination.
    Weyens N; Beckers B; Schellingen K; Ceulemans R; van der Lelie D; Newman L; Taghavi S; Carleer R; Vangronsveld J
    Int J Phytoremediation; 2015; 17(1-6):40-8. PubMed ID: 25174423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cometabolic microbial degradation of trichloroethylene in the presence of toluene.
    Sui H; Li XG; Xu SM
    J Environ Sci (China); 2004; 16(3):487-9. PubMed ID: 15272729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of the soil and groundwater contaminants, ethylene dibromide and trichloroethylene, by the tropical leguminous tree, Leuceana leucocephala.
    Doty SL; Shang TQ; Wilson AM; Moore AL; Newman LA; Strand SE; Gordon MP
    Water Res; 2003 Jan; 37(2):441-9. PubMed ID: 12502073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pilot-scale demonstration of a two-stage methanotrophic bioreactor for biodegradation of trichloroethylene in groundwater.
    Dobbins DC; Peltola J; Kustritz JM; Chresand TJ; Preston JC
    J Air Waste Manag Assoc; 1995 Jan; 45(1):12-9. PubMed ID: 15658162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of sorption and desorption resistance on aerobic trichloroethylene biodegradation in soils.
    Lee S; Moe WM; Valsaraj KT; Pardue JH
    Environ Toxicol Chem; 2002 Aug; 21(8):1609-17. PubMed ID: 12152760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1.
    Zhang Y; Liu J; Zhou Y; Gong T; Wang J; Ge Y
    J Hazard Mater; 2013 Sep; 260():1100-7. PubMed ID: 23933506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination.
    Weyens N; Croes S; Dupae J; Newman L; van der Lelie D; Carleer R; Vangronsveld J
    Environ Pollut; 2010 Jul; 158(7):2422-7. PubMed ID: 20462680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.
    Antonkiewicz J; Para A
    Int J Phytoremediation; 2016; 18(3):245-50. PubMed ID: 26280197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of trichloroethene-contaminated water with a fluidized-bed bioreactor.
    Segar RL; Leung SY; Vivek SA
    Ann N Y Acad Sci; 1997 Nov; 829():83-96. PubMed ID: 9472314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.