BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 27619503)

  • 21. Cellular Basis of Bitter-Driven Aversive Behaviors in
    Choi J; Yu S; Choi MS; Jang S; Han IJ; Maier GL; Sprecher SG; Kwon JY
    eNeuro; 2020; 7(2):. PubMed ID: 32220859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Taste perception and coding in Drosophila.
    Thorne N; Chromey C; Bray S; Amrein H
    Curr Biol; 2004 Jun; 14(12):1065-79. PubMed ID: 15202999
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tissue-specific activation of a single gustatory receptor produces opposing behavioral responses in Drosophila.
    Joseph RM; Heberlein U
    Genetics; 2012 Oct; 192(2):521-32. PubMed ID: 22798487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste.
    Tauber JM; Brown EB; Li Y; Yurgel ME; Masek P; Keene AC
    PLoS Genet; 2017 Nov; 13(11):e1007059. PubMed ID: 29121639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bitter-sweet processing in larval Drosophila.
    König C; Schleyer M; Leibiger J; El-Keredy A; Gerber B
    Chem Senses; 2014 Jul; 39(6):489-505. PubMed ID: 24833133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain.
    Melcher C; Pankratz MJ
    PLoS Biol; 2005 Sep; 3(9):e305. PubMed ID: 16122349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a Drosophila glucose receptor using Ca2+ imaging of single chemosensory neurons.
    Miyamoto T; Chen Y; Slone J; Amrein H
    PLoS One; 2013; 8(2):e56304. PubMed ID: 23418550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synaptic transmission parallels neuromodulation in a central food-intake circuit.
    Schlegel P; Texada MJ; Miroschnikow A; Schoofs A; Hückesfeld S; Peters M; Schneider-Mizell CM; Lacin H; Li F; Fetter RD; Truman JW; Cardona A; Pankratz MJ
    Elife; 2016 Nov; 5():. PubMed ID: 27845623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drosophila gustatory preference behaviors require the atypical soluble guanylyl cyclases.
    Vermehren-Schmaedick A; Scudder C; Timmermans W; Morton DB
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Jul; 197(7):717-27. PubMed ID: 21350862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Starvation-Induced Depotentiation of Bitter Taste in Drosophila.
    LeDue EE; Mann K; Koch E; Chu B; Dakin R; Gordon MD
    Curr Biol; 2016 Nov; 26(21):2854-2861. PubMed ID: 27720624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Taste quality and hunger interactions in a feeding sensorimotor circuit.
    Shiu PK; Sterne GR; Engert S; Dickson BJ; Scott K
    Elife; 2022 Jul; 11():. PubMed ID: 35791902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A gustatory second-order neuron that connects sucrose-sensitive primary neurons and a distinct region of the gnathal ganglion in the Drosophila brain.
    Miyazaki T; Lin TY; Ito K; Lee CH; Stopfer M
    J Neurogenet; 2015; 29(2-3):144-55. PubMed ID: 26004543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular and cellular organization of the taste system in the Drosophila larva.
    Kwon JY; Dahanukar A; Weiss LA; Carlson JR
    J Neurosci; 2011 Oct; 31(43):15300-9. PubMed ID: 22031876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A closed-loop optogenetic screen for neurons controlling feeding in Drosophila.
    Lau CKS; Jelen M; Gordon MD
    G3 (Bethesda); 2021 May; 11(5):. PubMed ID: 33714999
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Representations of Taste Modality in the Drosophila Brain.
    Harris DT; Kallman BR; Mullaney BC; Scott K
    Neuron; 2015 Jun; 86(6):1449-60. PubMed ID: 26051423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The molecular basis for water taste in Drosophila.
    Cameron P; Hiroi M; Ngai J; Scott K
    Nature; 2010 May; 465(7294):91-5. PubMed ID: 20364123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic dissection of neural circuit anatomy underlying feeding behavior in Drosophila: distinct classes of hugin-expressing neurons.
    Bader R; Colomb J; Pankratz B; Schröck A; Stocker RF; Pankratz MJ
    J Comp Neurol; 2007 Jun; 502(5):848-56. PubMed ID: 17436293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative neuroanatomy and genomics of hugin and pheromone biosynthesis activating neuropeptide (PBAN).
    Bader R; Wegener C; Pankratz MJ
    Fly (Austin); 2007; 1(4):228-31. PubMed ID: 18820431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcium Taste Avoidance in Drosophila.
    Lee Y; Poudel S; Kim Y; Thakur D; Montell C
    Neuron; 2018 Jan; 97(1):67-74.e4. PubMed ID: 29276056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons.
    Masek P; Keene AC
    PLoS Genet; 2013; 9(9):e1003710. PubMed ID: 24068941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.