BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 27619522)

  • 1. Photoresponsive colorimetric immunoassay based on chitosan modified AgI/TiO
    Chang H; Lv J; Zhang H; Zhang B; Wei W; Qiao Y
    Biosens Bioelectron; 2017 Jan; 87():579-586. PubMed ID: 27619522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly photosensitive colorimetric immunoassay for tumor marker detection based on Cu
    Zhang B; Wang X; Zhao Y; Lv J; Meng H; Chang H; Zhang H; Wei W
    Talanta; 2017 May; 167():111-117. PubMed ID: 28340700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TiO
    Jia Y; Zhang B; Chang H; Yu F; Zhao Z
    J Pharm Biomed Anal; 2019 May; 169():75-81. PubMed ID: 30844625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochromic immunoassay for tumor marker detection based on ZnO/AgI nanophotocatalyst.
    Zhang B; Wang X; Cheng Y
    Mikrochim Acta; 2022 Jan; 189(2):77. PubMed ID: 35091865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AgI/TiO2 nanocomposites: ultrasound-assisted preparation, visible-light induced photocatalytic degradation of methyl orange and antibacterial activity.
    Xue B; Sun T; Wu JK; Mao F; Yang W
    Ultrason Sonochem; 2015 Jan; 22():1-6. PubMed ID: 24853106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple and fast chromogenic reaction based on Ag
    Wang X; Zhang B; Li J; Chang H; Wei W
    Talanta; 2017 Dec; 175():229-234. PubMed ID: 28841984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free immunoassay for chloramphenicol based on hollow gold nanospheres/chitosan composite.
    Zhang N; Xiao F; Bai J; Lai Y; Hou J; Xian Y; Jin L
    Talanta; 2011 Dec; 87():100-5. PubMed ID: 22099655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Enhanced visible-light absorbance of nanosized AgI/TiO2 by using calcination combined with light irradiation].
    Liang Z; Ni JR
    Huan Jing Ke Xue; 2009 Jul; 30(7):1968-73. PubMed ID: 19774993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A triple-amplification colorimetric assay for antibiotics based on magnetic aptamer-enzyme co-immobilized platinum nanoprobes and exonuclease-assisted target recycling.
    Miao Y; Gan N; Ren HX; Li T; Cao Y; Hu F; Yan Z; Chen Y
    Analyst; 2015 Nov; 140(22):7663-71. PubMed ID: 26442572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conventional chemical reaction for use in an unconventional assay: A colorimetric immunoassay for aflatoxin B
    Lai W; Zeng Q; Tang J; Zhang M; Tang D
    Mikrochim Acta; 2018 Jan; 185(2):92. PubMed ID: 29594447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AgI/TiO2 nanobelts monolithic catalyst with enhanced visible light photocatalytic activity.
    Yi J; Huang L; Wang H; Yu H; Peng F
    J Hazard Mater; 2015 Mar; 284():207-14. PubMed ID: 25463235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food.
    Yan C; Zhang J; Yao L; Xue F; Lu J; Li B; Chen W
    Food Chem; 2018 Sep; 260():208-212. PubMed ID: 29699664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient hydroxyapatite/TiO2 composites covered by silver halides as E. coli disinfectant under visible light and dark media.
    Azimzadehirani M; Elahifard M; Haghighi S; Gholami M
    Photochem Photobiol Sci; 2013 Oct; 12(10):1787-94. PubMed ID: 23824359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanocatalyst-based immunosensing strategy accompanying catalytic reduction of 4-nitrophenol for sensitive monitoring of chloramphenicol residue.
    Que X; Tang D; Xia B; Lu M; Tang D
    Anal Chim Acta; 2014 Jun; 830():42-8. PubMed ID: 24856510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme-controlled dissolution of MnO
    Lai W; Wei Q; Xu M; Zhuang J; Tang D
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):645-651. PubMed ID: 26725933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a homogeneous immunoassay based on the AlphaLISA method for the detection of chloramphenicol in milk, honey and eggs.
    Zhang Y; Huang B; Zhang J; Wang K; Jin J
    J Sci Food Agric; 2012 Jul; 92(9):1944-7. PubMed ID: 22234784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A gel-based visual immunoassay for non-instrumental detection of chloramphenicol in food samples.
    Yuan M; Sheng W; Zhang Y; Wang J; Yang Y; Zhang S; Goryacheva IY; Wang S
    Anal Chim Acta; 2012 Nov; 751():128-34. PubMed ID: 23084061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly selective electrochemical sensor for chloramphenicol based on three-dimensional reduced graphene oxide architectures.
    Zhang X; Zhang YC; Zhang JW
    Talanta; 2016 Dec; 161():567-573. PubMed ID: 27769449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile sonochemical synthesis of porous and hierarchical manganese(III) oxide tiny nanostructures for super sensitive electrocatalytic detection of antibiotic (chloramphenicol) in fresh milk.
    Rajaji U; Muthumariappan A; Chen SM; Chen TW; Tseng TW; Wang K; Qi D; Jiang J
    Ultrason Sonochem; 2019 Nov; 58():104648. PubMed ID: 31450373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparsion of an immunochromatographic strip with ELISA for simultaneous detection of thiamphenicol, florfenicol and chloramphenicol in food samples.
    Guo L; Song S; Liu L; Peng J; Kuang H; Xu C
    Biomed Chromatogr; 2015 Sep; 29(9):1432-9. PubMed ID: 25675893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.