These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27619534)

  • 1. Allosteric and Chelate Cooperativity in Divalent Crown Ether/Ammonium Complexes with Strong Binding Enhancement.
    von Krbek LK; Achazi AJ; Solleder M; Weber M; Paulus B; Schalley CA
    Chemistry; 2016 Oct; 22(43):15475-15484. PubMed ID: 27619534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Delicate Balance of Preorganisation and Adaptability in Multiply Bonded Host-Guest Complexes.
    von Krbek LK; Achazi AJ; Schoder S; Gaedke M; Biberger T; Paulus B; Schalley CA
    Chemistry; 2017 Feb; 23(12):2877-2883. PubMed ID: 27925324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic Analysis of Allosteric and Chelate Cooperativity in Di- and Trivalent Ammonium/Crown-Ether Pseudorotaxanes.
    Nowosinski K; von Krbek LK; Traulsen NL; Schalley CA
    Org Lett; 2015 Oct; 17(20):5076-9. PubMed ID: 26440053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chelate cooperativity effects on the formation of di- and trivalent pseudo[2]rotaxanes with diketopiperazine threads and tetralactam wheels.
    Traulsen NL; Traulsen CH; Deutinger PM; Müller S; Schmidt D; Linder I; Schalley CA
    Org Biomol Chem; 2015 Nov; 13(44):10881-7. PubMed ID: 26366717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimuli-responsive host-guest systems based on the recognition of cryptands by organic guests.
    Zhang M; Yan X; Huang F; Niu Z; Gibson HW
    Acc Chem Res; 2014 Jul; 47(7):1995-2005. PubMed ID: 24804805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chelate cooperativity and spacer length effects on the assembly thermodynamics and kinetics of divalent pseudorotaxanes.
    Jiang W; Nowosinski K; Löw NL; Dzyuba EV; Klautzsch F; Schäfer A; Huuskonen J; Rissanen K; Schalley CA
    J Am Chem Soc; 2012 Jan; 134(3):1860-8. PubMed ID: 22192048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing cooperativity in supramolecular systems.
    von Krbek LKS; Schalley CA; Thordarson P
    Chem Soc Rev; 2017 May; 46(9):2622-2637. PubMed ID: 28352870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative Homotropic Cooperativity in Guest Binding of a Trisporphyrin Double Cleft.
    Hisano N; Kodama T; Haino T
    Chemistry; 2023 Jun; 29(32):e202300107. PubMed ID: 36989070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conjugated Porphyrin Dimers: Cooperative Effects and Electronic Communication in Supramolecular Ensembles with C
    Moreira L; Calbo J; Aragó J; Illescas BM; Nierengarten I; Delavaux-Nicot B; Ortí E; Martín N; Nierengarten JF
    J Am Chem Soc; 2016 Nov; 138(47):15359-15367. PubMed ID: 27640915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iptycene-derived crown ether hosts for molecular recognition and self-assembly.
    Han Y; Meng Z; Ma YX; Chen CF
    Acc Chem Res; 2014 Jul; 47(7):2026-40. PubMed ID: 24877894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies into the thermodynamic origin of negative cooperativity in ion-pairing molecular recognition.
    Tobey SL; Anslyn EV
    J Am Chem Soc; 2003 Sep; 125(36):10963-70. PubMed ID: 12952478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-Tight Host-Guest Binding with Exceptionally Strong Positive Cooperativity.
    Sobiech TA; Zhong Y; Miller DP; McGrath JK; Scalzo CT; Redington MC; Zurek E; Gong B
    Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202213467. PubMed ID: 36259360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and stability of supramolecular crown ether complexes.
    Hintze KJ; Lützen A; Bredow T
    J Comput Chem; 2015 Jul; 36(19):1467-72. PubMed ID: 26010438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical and experimental investigation of crown/ammonium complexes in solution.
    Achazi AJ; von Krbek LK; Schalley CA; Paulus B
    J Comput Chem; 2016 Jan; 37(1):18-24. PubMed ID: 25868688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational investigation of allostery in the catabolite activator protein.
    Li L; Uversky VN; Dunker AK; Meroueh SO
    J Am Chem Soc; 2007 Dec; 129(50):15668-76. PubMed ID: 18041838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entropy-Driven Cooperativity in the Guest Binding of an Octaphosphonate Bis-cavitand.
    Shimoyama D; Haino T
    Chemistry; 2020 Mar; 26(14):3074-3079. PubMed ID: 31804745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allosteric cooperativity in ternary complexes with low symmetry.
    Chai H; Yang LP; Ke H; Pang XY; Jiang W
    Chem Commun (Camb); 2018 Jul; 54(55):7677-7680. PubMed ID: 29938266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exact analysis of heterotropic interactions in proteins: Characterization of cooperative ligand binding by isothermal titration calorimetry.
    Velazquez-Campoy A; Goñi G; Peregrina JR; Medina M
    Biophys J; 2006 Sep; 91(5):1887-904. PubMed ID: 16766617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved complexation of paraquat derivatives by the formation of crown ether-based cryptands.
    Zhang M; Zhu K; Huang F
    Chem Commun (Camb); 2010 Nov; 46(43):8131-41. PubMed ID: 20830438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aromatic amide and hydrazide foldamer-based responsive host-guest systems.
    Zhang DW; Zhao X; Li ZT
    Acc Chem Res; 2014 Jul; 47(7):1961-70. PubMed ID: 24673152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.