BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 27619713)

  • 1. Heterotrophic cultivation of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with Rhodotorula glutinis.
    Wang S; Wu Y; Wang X
    Bioresour Technol; 2016 Nov; 220():615-620. PubMed ID: 27619713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A symbiotic yeast to enhance heterotrophic and mixotrophic cultivation of Chlorella pyrenoidosa using sucrose as the carbon source.
    Tian YT; Wang X; Cui YH; Wang SK
    Bioprocess Biosyst Eng; 2020 Dec; 43(12):2243-2252. PubMed ID: 32671549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterotrophic culture of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with immobilized yeast.
    Wang SK; Wang X; Tao HH; Sun XS; Tian YT
    Bioresour Technol; 2018 Feb; 249():425-430. PubMed ID: 29065324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of microalgal biomass and lipid productivities by a model of photoautotrophic culture with heterotrophic cells as seed.
    Han F; Huang J; Li Y; Wang W; Wang J; Fan J; Shen G
    Bioresour Technol; 2012 Aug; 118():431-7. PubMed ID: 22717560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation.
    Yen HW; Chen PW; Chen LJ
    Bioresour Technol; 2015 May; 184():148-152. PubMed ID: 25311189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced single cell oil production by mixed culture of Chlorella pyrenoidosa and Rhodotorula glutinis using cassava bagasse hydrolysate as carbon source.
    Liu L; Chen J; Lim PE; Wei D
    Bioresour Technol; 2018 May; 255():140-148. PubMed ID: 29414159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition.
    Lin TS; Wu JY
    Bioresour Technol; 2015 May; 184():100-107. PubMed ID: 25443671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids.
    Wang Y; Rischer H; Eriksen NT; Wiebe MG
    Bioresour Technol; 2013 Sep; 144():608-14. PubMed ID: 23907064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using straw hydrolysate to cultivate Chlorella pyrenoidosa for high-value biomass production and the nitrogen regulation for biomass composition.
    Zhang TY; Wang XX; Wu YH; Wang JH; Deantes-Espinosa VM; Zhuang LL; Hu HY; Wu GX
    Bioresour Technol; 2017 Nov; 244(Pt 2):1254-1260. PubMed ID: 28645566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of volatile fatty acids on the growth and lipid properties of two microalgae strains during batch heterotrophic cultivation.
    Su K; Song M; Yu Z; Wang C; Sun J; Li X; Liu N; Mou Y; Lu T
    Chemosphere; 2021 Nov; 283():131204. PubMed ID: 34467947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields.
    Zhang Z; Ji H; Gong G; Zhang X; Tan T
    Bioresour Technol; 2014 Jul; 164():93-9. PubMed ID: 24841576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced biomass and lipid production by light exposure with mixed culture of Rhodotorula glutinis and Chlorella vulgaris using acetate as sole carbon source.
    Gong G; Wu B; Liu L; Li J; He M; Hu G
    Bioresour Technol; 2022 Nov; 364():128139. PubMed ID: 36252765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic modeling of growth and lipid body induction in Chlorella pyrenoidosa under heterotrophic conditions.
    Sachdeva N; Kumar GD; Gupta RP; Mathur AS; Manikandan B; Basu B; Tuli DK
    Bioresour Technol; 2016 Oct; 218():934-43. PubMed ID: 27450124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential heterotrophy-dilution-photoinduction cultivation for efficient microalgal biomass and lipid production.
    Fan J; Huang J; Li Y; Han F; Wang J; Li X; Wang W; Li S
    Bioresour Technol; 2012 May; 112():206-11. PubMed ID: 22406065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization.
    Sun Z; Dou X; Wu J; He B; Wang Y; Chen YF
    World J Microbiol Biotechnol; 2016 Jan; 32(1):9. PubMed ID: 26712624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic-Cu(II) stressed (HCuS) coupling cultivation.
    Li Y; Mu J; Chen D; Han F; Xu H; Kong F; Xie F; Feng B
    Bioresour Technol; 2013 Nov; 148():283-92. PubMed ID: 24055971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of fermentative metabolites for heterotrophic microalgae growth: Yields and kinetics.
    Turon V; Baroukh C; Trably E; Latrille E; Fouilland E; Steyer JP
    Bioresour Technol; 2015 Jan; 175():342-9. PubMed ID: 25459841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity.
    Ye Y; Huang Y; Xia A; Fu Q; Liao Q; Zeng W; Zheng Y; Zhu X
    Bioresour Technol; 2018 Dec; 270():80-87. PubMed ID: 30212777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of glucose on photosynthesis and growth of Chloralla sp. HN08 cells].
    Lang X; Liu Z; Xu M; Xie L; Li R
    Wei Sheng Wu Xue Bao; 2017 Apr; 57(4):550-9. PubMed ID: 29756738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthetic light reactions increase total lipid accumulation in carbon-supplemented batch cultures of Chlorella vulgaris.
    Woodworth BD; Mead RL; Nichols CN; Kolling DRJ
    Bioresour Technol; 2015 Mar; 179():159-164. PubMed ID: 25543540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.