BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 27619960)

  • 1. Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata.
    Han YH; Fu JW; Xiang P; Cao Y; Rathinasabapathi B; Chen Y; Ma LQ
    J Hazard Mater; 2017 Jan; 321():146-153. PubMed ID: 27619960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic-Hyperaccumulator
    Deng S; Guan DX; Cao Y; Wang C; Liu C; Ma LQ
    Environ Sci Technol; 2024 May; 58(18):7870-7879. PubMed ID: 38647530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteria associated with Comamonadaceae are key arsenite oxidizer associated with Pteris vittata root.
    Huang D; Sun X; Ghani MU; Li B; Yang J; Chen Z; Kong T; Xiao E; Liu H; Wang Q; Sun W
    Environ Pollut; 2024 May; 349():123909. PubMed ID: 38582183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation.
    Wang J; Zhao FJ; Meharg AA; Raab A; Feldmann J; McGrath SP
    Plant Physiol; 2002 Nov; 130(3):1552-61. PubMed ID: 12428020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Phosphate Transporter-B PvPTB1;1/1;2 Contribute to Efficient Phosphate Uptake and Arsenic Accumulation in As-Hyperaccumulator
    Sun D; Zhang X; Zeng Z; Feng H; Yin Z; Guo N; Tang Y; Qiu R; Ma LQ; Cao Y
    Environ Sci Technol; 2024 Apr; 58(17):7346-7356. PubMed ID: 38624169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases.
    Cesaro P; Cattaneo C; Bona E; Berta G; Cavaletto M
    Sci Rep; 2015 Sep; 5():14525. PubMed ID: 26412036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata.
    Ellis DR; Gumaelius L; Indriolo E; Pickering IJ; Banks JA; Salt DE
    Plant Physiol; 2006 Aug; 141(4):1544-54. PubMed ID: 16766666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana.
    Wang C; Na G; Bermejo ES; Chen Y; Banks JA; Salt DE; Zhao FJ
    New Phytol; 2018 Jan; 217(1):206-218. PubMed ID: 28857170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenite Antiporter
    Zhao F; Chen JX; Xu H; Han Y; Zhou M; Wang G; Ma LQ; Chen Y
    Environ Sci Technol; 2024 Jul; 58(26):11534-11541. PubMed ID: 38865317
    [No Abstract]   [Full Text] [Related]  

  • 10. New Arsenate Reductase Gene (arrA) PCR Primers for Diversity Assessment and Quantification in Environmental Samples.
    Mirza BS; Sorensen DL; Dupont RR; McLean JE
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27913413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil Microbiomes and their Arsenic Functional Genes in Chronically High-Arsenic Contaminated Soils.
    Sonthiphand P; Rueangmongkolrat N; Uthaipaisanwong P; Kusonmano K; Mhuantong W; Termsaithong T; Limthamprasert C; Chotpantarat S; Luepromchai E
    Bull Environ Contam Toxicol; 2024 Mar; 112(3):49. PubMed ID: 38466428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taxonomically-linked growth phenotypes during arsenic stress among arsenic resistant bacteria isolated from soils overlying the Centralia coal seam fire.
    Dunivin TK; Miller J; Shade A
    PLoS One; 2018; 13(1):e0191893. PubMed ID: 29370270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants.
    Punshon T; Jackson BP; Meharg AA; Warczack T; Scheckel K; Guerinot ML
    Sci Total Environ; 2017 Mar; 581-582():209-220. PubMed ID: 28043702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic toxicity: the effects on plant metabolism.
    Finnegan PM; Chen W
    Front Physiol; 2012; 3():182. PubMed ID: 22685440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembling thermostable chimeras as new platform for arsenic biosensing.
    Puopolo R; Sorrentino I; Gallo G; Piscitelli A; Giardina P; Le Goff A; Fiorentino G
    Sci Rep; 2021 Feb; 11(1):2991. PubMed ID: 33542380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical transformations of arsenic in the rhizosphere-root interface of Pityrogramma calomelanos and Pteris vittata.
    Corzo Remigio A; Harris HH; Paterson DJ; Edraki M; van der Ent A
    Metallomics; 2023 Aug; 15(8):. PubMed ID: 37528060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Arsenite Oxidase Gene (
    Hu M; Li F; Qiao J; Yuan C; Yu H; Zhuang L
    Front Microbiol; 2021; 12():691913. PubMed ID: 34690945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated level of arsenic negatively influences nifH gene expression of isolated soil bacteria in culture condition as well as soil system.
    Chakraborty A; Aziz Chowdhury A; Bhakat K; Islam E
    Environ Geochem Health; 2019 Oct; 41(5):1953-1966. PubMed ID: 30767095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient phosphate accumulation in the newly isolated
    Han YH; Fu T; Wang SS; Yu HT; Xiang P; Zhang WX; Chen DL; Li M
    3 Biotech; 2018 Jul; 8(7):313. PubMed ID: 30023145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation, identification and characterization of arsenic transforming exogenous endophytic
    Selvankumar T; Radhika R; Mythili R; Arunprakash S; Srinivasan P; Govarthanan M; Kim H
    3 Biotech; 2017 Aug; 7(4):264. PubMed ID: 28794920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.