These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 2762020)

  • 1. Growth and metabolic properties of Bacteroides intermedius in anaerobic continuous culture.
    Hamilton IR; McKee AS; Bowden GH
    Oral Microbiol Immunol; 1989 Jun; 4(2):89-97. PubMed ID: 2762020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pH on the growth and proteolytic activity of Porphyromonas gingivalis and Bacteroides intermedius.
    Takahashi N; Schachtele CF
    J Dent Res; 1990 Jun; 69(6):1266-9. PubMed ID: 2191980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation of L-tartrate by a newly isolated gram-negative glycolytic bacterium.
    Janssen PH
    Antonie Van Leeuwenhoek; 1991 Apr; 59(3):191-8. PubMed ID: 1867475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth of Bacteroides fragilis in continuous culture and in batch cultures at controlled pH.
    Dalland E; Hofstad T
    Appl Microbiol; 1974 Nov; 28(5):856-60. PubMed ID: 4441065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The stability of outer-membrane protein and antigen profiles of a strain of Bacteroides intermedius grown in continuous culture at different pH and growth rates.
    Bowden GH; Nolette N; McKee AS; Hamilton IR
    Can J Microbiol; 1991 May; 37(5):368-76. PubMed ID: 1878815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of long generation times on growth of Bacteroides thetaiotaomicron in carbohydrate-induced continuous culture.
    Kotarski SF; Salyers AA
    J Bacteriol; 1981 Jun; 146(3):853-60. PubMed ID: 7240086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat production by ruminal bacteria in continuous culture and its relationship to maintenance energy.
    Russell JB
    J Bacteriol; 1986 Nov; 168(2):694-701. PubMed ID: 3782021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pyruvate-proton symport and an H+-ATPase regulate the intracellular pH of Trypanosoma brucei at different stages of its life cycle.
    Vanderheyden N; Wong J; Docampo R
    Biochem J; 2000 Feb; 346 Pt 1(Pt 1):53-62. PubMed ID: 10657239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-utilization of polymerized carbon sources by Bacteroides ovatus grown in a two-stage continuous culture system.
    MacFarlane GT; Gibson GR
    Appl Environ Microbiol; 1991 Jan; 57(1):1-6. PubMed ID: 2036001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism and growth yields in Bacteroides ruminicola strain b14.
    Howlett MR; Mountfort DO; Turner KW; Roberton AM
    Appl Environ Microbiol; 1976 Aug; 32(2):274-83. PubMed ID: 970946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton motive force, energy recycling by end product excretion, and metabolic uncoupling during anaerobic growth of Pseudomonas mendocina.
    Verdoni N; Aon MA; Lebeault JM; Thomas D
    J Bacteriol; 1990 Dec; 172(12):6673-81. PubMed ID: 2254245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of pH and fluoride on properties of an oral strain of Lactobacillus casei grown in continuous culture.
    Hamilton IR; Boyar RM; Bowden GH
    Infect Immun; 1985 Jun; 48(3):664-70. PubMed ID: 3922892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Succinate transport by a ruminal selenomonad and its regulation by carbohydrate availability and osmotic strength.
    Strobel HJ; Russell JB
    Appl Environ Microbiol; 1991 Jan; 57(1):248-54. PubMed ID: 2036012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspects of the growth and metabolism of Fusobacterium nucleatum ATCC 10953 in continuous culture.
    Rogers AH; Zilm PS; Gully NJ; Pfennig AL; Marsh PD
    Oral Microbiol Immunol; 1991 Aug; 6(4):250-5. PubMed ID: 1812468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rabbit caecal bacterium Bacteroides caccae.
    Sirotek K; Slováková L; Kopecný J; Marounek M
    Lett Appl Microbiol; 2004; 38(4):327-32. PubMed ID: 15214734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH regulation by Streptococcus mutans.
    Dashper SG; Reynolds EC
    J Dent Res; 1992 May; 71(5):1159-65. PubMed ID: 1607433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The behaviour of Fusobacterium nucleatum chemostat-grown in glucose- and amino acid-based chemically defined media.
    Rogers AH; Chen J; Zilm PS; Gully NJ
    Anaerobe; 1998 Apr; 4(2):111-6. PubMed ID: 16887630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maintenance of proton motive force by Streptococcus mutans and Streptococcus sobrinus during growth in continuous culture.
    Hamilton IR
    Oral Microbiol Immunol; 1990 Oct; 5(5):280-7. PubMed ID: 2098703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origins of fermentation products formed during growth of Bacteroides ruminicola on glucose.
    Mountfort DO; Roberton AM
    J Gen Microbiol; 1978 Jun; 106(2):353-60. PubMed ID: 670931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental regulation of carbohydrate metabolism by Streptococcus sanguis NCTC 7865 grown in a chemostat.
    Marsh PD; McDermid AS; Keevil CW; Ellwood DC
    J Gen Microbiol; 1985 Oct; 131(10):2505-14. PubMed ID: 2999295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.