BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

762 related articles for article (PubMed ID: 27620276)

  • 1. Molecular Pathways: Targeting CD96 and TIGIT for Cancer Immunotherapy.
    Blake SJ; Dougall WC; Miles JJ; Teng MW; Smyth MJ
    Clin Cancer Res; 2016 Nov; 22(21):5183-5188. PubMed ID: 27620276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy.
    Dougall WC; Kurtulus S; Smyth MJ; Anderson AC
    Immunol Rev; 2017 Mar; 276(1):112-120. PubMed ID: 28258695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of Metastases Using a New Lymphocyte Checkpoint Target for Cancer Immunotherapy.
    Blake SJ; Stannard K; Liu J; Allen S; Yong MC; Mittal D; Aguilera AR; Miles JJ; Lutzky VP; de Andrade LF; Martinet L; Colonna M; Takeda K; Kühnel F; Gurlevik E; Bernhardt G; Teng MW; Smyth MJ
    Cancer Discov; 2016 Apr; 6(4):446-59. PubMed ID: 26787820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human CD96 Correlates to Natural Killer Cell Exhaustion and Predicts the Prognosis of Human Hepatocellular Carcinoma.
    Sun H; Huang Q; Huang M; Wen H; Lin R; Zheng M; Qu K; Li K; Wei H; Xiao W; Sun R; Tian Z; Sun C
    Hepatology; 2019 Jul; 70(1):168-183. PubMed ID: 30411378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions.
    Chan CJ; Martinet L; Gilfillan S; Souza-Fonseca-Guimaraes F; Chow MT; Town L; Ritchie DS; Colonna M; Andrews DM; Smyth MJ
    Nat Immunol; 2014 May; 15(5):431-8. PubMed ID: 24658051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hitting the complexity of the TIGIT-CD96-CD112R-CD226 axis for next-generation cancer immunotherapy.
    Jin HS; Park Y
    BMB Rep; 2021 Jan; 54(1):2-11. PubMed ID: 33298247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in therapeutic targeting of immune checkpoints receptors within the CD96-TIGIT axis: clinical implications and future perspectives.
    Farhangnia P; Akbarpour M; Yazdanifar M; Aref AR; Delbandi AA; Rezaei N
    Expert Rev Clin Immunol; 2022 Dec; 18(12):1217-1237. PubMed ID: 36154551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TIGIT blockade enhances functionality of peritoneal NK cells with altered expression of DNAM-1/TIGIT/CD96 checkpoint molecules in ovarian cancer.
    Maas RJ; Hoogstad-van Evert JS; Van der Meer JM; Mekers V; Rezaeifard S; Korman AJ; de Jonge PK; Cany J; Woestenenk R; Schaap NP; Massuger LF; Jansen JH; Hobo W; Dolstra H
    Oncoimmunology; 2020 Nov; 9(1):1843247. PubMed ID: 33224630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells.
    Kim N; Kim HS
    Front Immunol; 2018; 9():2041. PubMed ID: 30250471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered expression of CD226 and CD96 on natural killer cells in patients with pancreatic cancer.
    Peng YP; Xi CH; Zhu Y; Yin LD; Wei JS; Zhang JJ; Liu XC; Guo S; Fu Y; Miao Y
    Oncotarget; 2016 Oct; 7(41):66586-66594. PubMed ID: 27626490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the "PVR-TIGIT axis" with immune checkpoint therapies.
    Gorvel L; Olive D
    F1000Res; 2020; 9():. PubMed ID: 32489646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the Characteristics of TIGIT-Expressing CD3
    Zhang X; Lu X; Cheung AKL; Zhang Q; Liu Z; Li Z; Yuan L; Wang R; Liu Y; Tang B; Xia H; Wu H; Zhang T; Su B
    Front Immunol; 2021; 12():602492. PubMed ID: 33717085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coming of Age: CD96 Emerges as Modulator of Immune Responses.
    Georgiev H; Ravens I; Papadogianni G; Bernhardt G
    Front Immunol; 2018; 9():1072. PubMed ID: 29868026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TIGIT, A Novel Therapeutic Target for Tumor Immunotherapy.
    Liu XG; Hou M; Liu Y
    Immunol Invest; 2017 Feb; 46(2):172-182. PubMed ID: 27819527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD96 Is an Immune Checkpoint That Regulates CD8
    Mittal D; Lepletier A; Madore J; Aguilera AR; Stannard K; Blake SJ; Whitehall VLJ; Liu C; Bettington ML; Takeda K; Long GV; Scolyer RA; Lan R; Siemers N; Korman A; Teng MWL; Johnston RJ; Dougall WC; Smyth MJ
    Cancer Immunol Res; 2019 Apr; 7(4):559-571. PubMed ID: 30894377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TX99 Is a Neutralizing Monoclonal Antibody Against Mouse TIGIT.
    Nakamura Y; Naito K; Yamashita-Kanemaru Y; Komori D; Hirochika R; Shibuya A; Shibuya K
    Monoclon Antib Immunodiagn Immunother; 2018 Apr; 37(2):105-109. PubMed ID: 29648914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [CD226, TIGIT and CD96 regulate NK cell function and participate in anti-tumor immunity].
    Zhang H; Liu R; Zhang Y; Liu X; Chen L
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2023 Sep; 39(9):852-856. PubMed ID: 37732582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fcγ receptor-mediated cross-linking codefines the immunostimulatory activity of anti-human CD96 antibodies.
    Rogel A; Ibrahim FM; Thirdborough SM; Renart-Depontieu F; Birts CN; Buchan SL; Preville X; King EV; Al-Shamkhani A
    JCI Insight; 2022 Oct; 7(19):. PubMed ID: 35998045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between nectin-1 and the human natural killer cell receptor CD96.
    Holmes VM; Maluquer de Motes C; Richards PT; Roldan J; Bhargava AK; Orange JS; Krummenacher C
    PLoS One; 2019; 14(2):e0212443. PubMed ID: 30759143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting CD96 overcomes PD-1 blockade resistance by enhancing CD8+ TIL function in cervical cancer.
    Wang Y; Wang C; Qiu J; Qu X; Peng J; Lu C; Zhang M; Zhang M; Qi X; Li G; Hua K
    J Immunother Cancer; 2022 Mar; 10(3):. PubMed ID: 35288463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.