BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27620476)

  • 1. Bedaquiline Targets the ε Subunit of Mycobacterial F-ATP Synthase.
    Kundu S; Biukovic G; Grüber G; Dick T
    Antimicrob Agents Chemother; 2016 Nov; 60(11):6977-6979. PubMed ID: 27620476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triple Mycobacterial ATP-synthase mutations impedes Bedaquiline binding: Atomistic and structural perspectives.
    Salifu EY; Agoni C; Olotu FA; Soliman MES
    Comput Biol Chem; 2020 Apr; 85():107204. PubMed ID: 31981966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TBAJ-876 Retains Bedaquiline's Activity against Subunits c and ε of
    Sarathy JP; Ragunathan P; Shin J; Cooper CB; Upton AM; Grüber G; Dick T
    Antimicrob Agents Chemother; 2019 Oct; 63(10):. PubMed ID: 31358589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic assessment of mycobacterial F
    Wong CF; Lau AM; Harikishore A; Saw WG; Shin J; Ragunathan P; Bhushan S; Ngan SC; Sze SK; Bates RW; Dick T; Grüber G
    FEBS J; 2021 Feb; 288(3):818-836. PubMed ID: 32525613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ATP synthase inhibitor bedaquiline interferes with small-molecule efflux in Mycobacterium smegmatis.
    Lu P; Villellas C; Koul A; Andries K; Lill H; Bald D
    J Antibiot (Tokyo); 2014 Dec; 67(12):835-7. PubMed ID: 24916895
    [No Abstract]   [Full Text] [Related]  

  • 6. Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline.
    Guo H; Courbon GM; Bueler SA; Mai J; Liu J; Rubinstein JL
    Nature; 2021 Jan; 589(7840):143-147. PubMed ID: 33299175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bactericidal mode of action of bedaquiline.
    Hards K; Robson JR; Berney M; Shaw L; Bald D; Koul A; Andries K; Cook GM
    J Antimicrob Chemother; 2015 Jul; 70(7):2028-37. PubMed ID: 25754998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current Perspective of ATP Synthase Inhibitors in the Management of the Tuberculosis.
    Divita KM; Khatik GL
    Curr Top Med Chem; 2021; 21(18):1623-1643. PubMed ID: 34517802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the Physiology and Metabolism of a Mycobacterial Cell in an Energy-Compromised State.
    Patil V; Jain V
    J Bacteriol; 2019 Oct; 201(19):. PubMed ID: 31285242
    [No Abstract]   [Full Text] [Related]  

  • 10. The NMR solution structure of Mycobacterium tuberculosis F-ATP synthase subunit ε provides new insight into energy coupling inside the rotary engine.
    Joon S; Ragunathan P; Sundararaman L; Nartey W; Kundu S; Manimekalai MSS; Bogdanović N; Dick T; Grüber G
    FEBS J; 2018 Mar; 285(6):1111-1128. PubMed ID: 29360236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diarylquinolines target subunit c of mycobacterial ATP synthase.
    Koul A; Dendouga N; Vergauwen K; Molenberghs B; Vranckx L; Willebrords R; Ristic Z; Lill H; Dorange I; Guillemont J; Bald D; Andries K
    Nat Chem Biol; 2007 Jun; 3(6):323-4. PubMed ID: 17496888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variations of the Mycobacterium abscessus F-ATP synthase subunit a-c interface alter binding and potency of the anti-TB drug bedaquiline.
    Krah A; Ragunathan P; Bond PJ; Grüber G
    Biochem Biophys Res Commun; 2024 Jan; 690():149249. PubMed ID: 38000294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of a Novel Mycobacterial F-ATP Synthase Inhibitor and its Potency in Combination with Diarylquinolines.
    Hotra A; Ragunathan P; Ng PS; Seankongsuk P; Harikishore A; Sarathy JP; Saw WG; Lakshmanan U; Sae-Lao P; Kalia NP; Shin J; Kalyanasundaram R; Anbarasu S; Parthasarathy K; Pradeep CN; Makhija H; Dröge P; Poulsen A; Tan JHL; Pethe K; Dick T; Bates RW; Grüber G
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13295-13304. PubMed ID: 32337801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, Synthesis and Biological Evaluation of Anti-tuberculosis Agents based on Bedaquiline Structure.
    Wu C; Luo J; Wu M; Meng F; Cai Z; Chen Y; Sun T
    Med Chem; 2020; 16(5):703-714. PubMed ID: 31203803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of mycobacterial ATP synthase inhibition by squaramides and second generation diarylquinolines.
    Courbon GM; Palme PR; Mann L; Richter A; Imming P; Rubinstein JL
    EMBO J; 2023 Aug; 42(15):e113687. PubMed ID: 37377118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Halting ionic shuttle to disrupt the synthetic machinery-Structural and molecular insights into the inhibitory roles of Bedaquiline towards Mycobacterium tuberculosis ATP synthase in the treatment of tuberculosis.
    Salifu EY; Agoni C; Olotu FA; Dokurugu YM; Soliman MES
    J Cell Biochem; 2019 Sep; 120(9):16108-16119. PubMed ID: 31125144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bedaquiline: a novel antitubercular agent for the treatment of multidrug-resistant tuberculosis.
    Worley MV; Estrada SJ
    Pharmacotherapy; 2014 Nov; 34(11):1187-97. PubMed ID: 25203970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tale of two inhibitors: diarylquinolines and squaramides.
    Chen J; Ekiert DC
    EMBO J; 2023 Aug; 42(15):e114912. PubMed ID: 37435707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New mutations in the mycobacterial ATP synthase: new insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure.
    Segala E; Sougakoff W; Nevejans-Chauffour A; Jarlier V; Petrella S
    Antimicrob Agents Chemother; 2012 May; 56(5):2326-34. PubMed ID: 22354303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP Synthase, an Emerging Target in TB Drug Discovery: Review of SAR and Clinical Pharmacology of Diarylquinoline Inhibitors.
    Dhulap A; Banerjee P
    Curr Drug Targets; 2021; 22(11):1207-1221. PubMed ID: 33480344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.