BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27620740)

  • 1. Degradation of zinc containing phosphate-based glass as a material for orthopedic tissue engineering.
    Qaysi MA; Petrie A; Shah R; Knowles JC
    J Mater Sci Mater Med; 2016 Oct; 27(10):157. PubMed ID: 27620740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc and strontium based phosphate glass beads: a novel material for bone tissue engineering.
    AlQaysi M; Aldaadaa A; Mordan N; Shah R; Knowles JC
    Biomed Mater; 2017 Oct; 12(6):065011. PubMed ID: 28762960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications.
    Abou Neel EA; Knowles JC
    J Mater Sci Mater Med; 2008 Jan; 19(1):377-86. PubMed ID: 17607512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing, characterisation, and biocompatibility of zinc modified metaphosphate based glasses for biomedical applications.
    Abou Neel EA; O'Dell LA; Smith ME; Knowles JC
    J Mater Sci Mater Med; 2008 Apr; 19(4):1669-79. PubMed ID: 18060479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strontium- and calcium-containing, titanium-stabilised phosphate-based glasses with prolonged degradation for orthopaedic tissue engineering.
    Al Qaysi M; Walters NJ; Foroutan F; Owens GJ; Kim HW; Shah R; Knowles JC
    J Biomater Appl; 2015 Sep; 30(3):300-10. PubMed ID: 26023179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses.
    Abou Neel EA; Chrzanowski W; Knowles JC
    Acta Biomater; 2008 May; 4(3):523-34. PubMed ID: 18249043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards modular bone tissue engineering using Ti-Co-doped phosphate glass microspheres: cytocompatibility and dynamic culture studies.
    Peticone C; De Silva Thompson D; Owens GJ; Kim HW; Micheletti M; Knowles JC; Wall I
    J Biomater Appl; 2017 Sep; 32(3):295-310. PubMed ID: 28750600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of surface free energy in titanium doped phosphate based glasses by co-doping with zinc.
    Neel EAA; O'Dell LA; Chrzanowski W; Smith ME; Knowles JC
    J Biomed Mater Res B Appl Biomater; 2009 May; 89(2):392-407. PubMed ID: 18837445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development, characterisation and biocompatibility testing of a cobalt-containing titanium phosphate-based glass for engineering of vascularized hard tissues.
    Lee IH; Yu HS; Lakhkar NJ; Kim HW; Gong MS; Knowles JC; Wall IB
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2104-12. PubMed ID: 23498238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass system.
    Ahmed I; Lewis M; Olsen I; Knowles JC
    Biomaterials; 2004 Feb; 25(3):491-9. PubMed ID: 14585698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the effect of SiO2-TiO 2-CaO-Na 2O-ZnO bioactive glass doped hydroxyapatite: characterisation and structural evaluation.
    Yatongchai C; Wren AW; Curran DJ; Hampshire S; Towler MR
    J Mater Sci Mater Med; 2014 Jul; 25(7):1645-59. PubMed ID: 24748516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titanium phosphate glass microspheres for bone tissue engineering.
    Lakhkar NJ; Park JH; Mordan NJ; Salih V; Wall IB; Kim HW; King SP; Hanna JV; Martin RA; Addison O; Mosselmans JF; Knowles JC
    Acta Biomater; 2012 Nov; 8(11):4181-90. PubMed ID: 22835676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical properties and biocompatibility effects of doping SiO
    Aldaadaa A; Al Qaysi M; Georgiou G; Ma Leeson R; Knowles JC
    J Biomater Appl; 2018 Aug; 33(2):271-280. PubMed ID: 30096999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Titanium and strontium-doped phosphate glasses as vehicles for strontium ion delivery to cells.
    Lakhkar N; Abou Neel EA; Salih V; Knowles JC
    J Biomater Appl; 2011 May; 25(8):877-93. PubMed ID: 20219848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement in degradability of 58s glass scaffolds by ZnO and β-TCP modification.
    Shuai C; Cao Y; Dan G; Gao C; Feng P; Wu P
    Bioengineered; 2016 Sep; 7(5):342-351. PubMed ID: 27710432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Al
    Babu MM; Venkateswara Rao P; Veeraiah N; Prasad PS
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110591. PubMed ID: 31704606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the addition of SiO₂-CaO-ZnO-Na₂O-TiO₂ bioactive glass to hydroxyapatite: Characterization, mechanical properties and bioactivity.
    Yatongchai C; Placek LM; Curran DJ; Towler MR; Wren AW
    J Biomater Appl; 2015 Nov; 30(5):495-511. PubMed ID: 26116020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres.
    Abou Neel EA; Ahmed I; Blaker JJ; Bismarck A; Boccaccini AR; Lewis MP; Nazhat SN; Knowles JC
    Acta Biomater; 2005 Sep; 1(5):553-63. PubMed ID: 16701835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc-containing phosphate-based glasses for tissue engineering.
    Salih V; Patel A; Knowles JC
    Biomed Mater; 2007 Mar; 2(1):11-20. PubMed ID: 18458428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of strontium substitution on the cytocompatibility and 3-D scaffold structure for the xSrO-(10-x) MgO-60SiO
    Thakur S; Garg S; Kaur G; Pandey OP
    J Mater Sci Mater Med; 2017 Jun; 28(6):89. PubMed ID: 28484926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.