These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27620865)

  • 1. Horizontal vectorization of electron repulsion integrals.
    Pritchard BP; Chow E
    J Comput Chem; 2016 Oct; 37(28):2537-46. PubMed ID: 27620865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient evaluation of the geometrical first derivatives of three-center Coulomb integrals.
    Samu G; Kállay M
    J Chem Phys; 2018 Sep; 149(12):124101. PubMed ID: 30278674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the use of the Obara-Saika recurrence relations for the calculation of structure factors in quantum crystallography.
    Genoni A
    Acta Crystallogr A Found Adv; 2020 Mar; 76(Pt 2):172-179. PubMed ID: 32124855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient evaluation of three-center Coulomb integrals.
    Samu G; Kállay M
    J Chem Phys; 2017 May; 146(20):204101. PubMed ID: 28571354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. libreta: Computerized Optimization and Code Synthesis for Electron Repulsion Integral Evaluation.
    Zhang J
    J Chem Theory Comput; 2018 Feb; 14(2):572-587. PubMed ID: 29241013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Efficient Hartree-Fock Implementation Based on the Contraction of Integrals in the Primitive Basis.
    Held J; Hanrath M; Dolg M
    J Chem Theory Comput; 2018 Dec; 14(12):6197-6210. PubMed ID: 30365307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple algebraic derivation of the Obara-Saika scheme for general two-electron interaction potentials.
    Ahlrichs R
    Phys Chem Chem Phys; 2006 Jul; 8(26):3072-7. PubMed ID: 16804606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An algorithm for the efficient evaluation of two-electron repulsion integrals over contracted Gaussian-type basis functions.
    Sandberg JA; Rinkevicius Z
    J Chem Phys; 2012 Dec; 137(23):234105. PubMed ID: 23267469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracule functional models. V. Recurrence relations for two-electron integrals in position and momentum space.
    Hollett JW; Gill PM
    Phys Chem Chem Phys; 2011 Feb; 13(7):2972-8. PubMed ID: 21170440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Memory-Efficient Recursive Evaluation of 3-Center Gaussian Integrals.
    Asadchev A; Valeev EF
    J Chem Theory Comput; 2023 Mar; 19(6):1698-1710. PubMed ID: 36917186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A full-pivoting algorithm for the Cholesky decomposition of two-electron repulsion and spin-orbit coupling integrals.
    Piccardo M; Soncini A
    J Comput Chem; 2017 Dec; 38(32):2775-2783. PubMed ID: 28944973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slater-type geminals in explicitly-correlated perturbation theory: application to n-alkanols and analysis of errors and basis-set requirements.
    Höfener S; Bischoff FA; Glöss A; Klopper W
    Phys Chem Chem Phys; 2008 Jun; 10(23):3390-9. PubMed ID: 18535722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals.
    Golze D; Benedikter N; Iannuzzi M; Wilhelm J; Hutter J
    J Chem Phys; 2017 Jan; 146(3):034105. PubMed ID: 28109230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient evaluation of the Breit operator in the Pauli spinor basis.
    Sun S; Ehrman J; Sun Q; Li X
    J Chem Phys; 2022 Aug; 157(6):064112. PubMed ID: 35963720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tomo3D 2.0--exploitation of advanced vector extensions (AVX) for 3D reconstruction.
    Agulleiro JI; Fernandez JJ
    J Struct Biol; 2015 Feb; 189(2):147-52. PubMed ID: 25528570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy and Efficiency of Coupled-Cluster Theory Using Density Fitting/Cholesky Decomposition, Frozen Natural Orbitals, and a t1-Transformed Hamiltonian.
    DePrince AE; Sherrill CD
    J Chem Theory Comput; 2013 Jun; 9(6):2687-96. PubMed ID: 26583862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Calculation of Molecular Integrals over London Atomic Orbitals.
    Irons TJP; Zemen J; Teale AM
    J Chem Theory Comput; 2017 Aug; 13(8):3636-3649. PubMed ID: 28692291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal Path Search for Recurrence Relation in Cartesian Gaussian Integrals.
    Liu F; Furlani T; Kong J
    J Phys Chem A; 2016 Dec; 120(51):10264-10272. PubMed ID: 27996260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient implementation of the GOSTSHYP pressure model by applying shell-bounding Gaussian 1-electron-3-center integral screening.
    Zeller F; Berquist E; Epifanovsky E; Neudecker T
    J Chem Phys; 2022 Nov; 157(18):184802. PubMed ID: 36379804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing the sparse matrix vector product using block-based kernels without zero padding on processors with AVX-512 instructions.
    Bramas B; Kus P
    PeerJ Comput Sci; 2018; 4():e151. PubMed ID: 33816805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.