These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 27620881)

  • 21. Neurodevelopment of Amazonian children exposed to ethylmercury (from Thimerosal in vaccines) and methylmercury (from fish).
    Marques RC; Abreu L; Bernardi JVE; Dórea JG
    Environ Res; 2016 Aug; 149():259-265. PubMed ID: 26774584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Speciation of methyl- and ethyl-mercury in hair of breastfed infants acutely exposed to thimerosal-containing vaccines.
    Dórea JG; Bezerra VL; Fajon V; Horvat M
    Clin Chim Acta; 2011 Aug; 412(17-18):1563-6. PubMed ID: 21575620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated speciation of mercury in the hair of breastfed infants exposed to ethylmercury from thimerosal-containing vaccines.
    Dórea JG; Wimer W; Marques RC; Shade C
    Biol Trace Elem Res; 2011 Jun; 140(3):262-71. PubMed ID: 20419397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of methyl and ethyl mercury by singlet oxygen generated from sea water exposed to sunlight or ultraviolet light.
    Suda I; Suda M; Hirayama K
    Arch Toxicol; 1993; 67(5):365-8. PubMed ID: 8368946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three types of ependymal cells with intracellular calcium oscillation are characterized by distinct cilia beating properties.
    Liu T; Jin X; Prasad RM; Sari Y; Nauli SM
    J Neurosci Res; 2014 Sep; 92(9):1199-204. PubMed ID: 24811319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Speciation analysis of mercury in natural water and fish samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry.
    Zhao Y; Zheng J; Fang L; Lin Q; Wu Y; Xue Z; Fu F
    Talanta; 2012 Jan; 89():280-5. PubMed ID: 22284493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mobilization of mercury species under dynamic laboratory redox conditions in a contaminated floodplain soil as affected by biochar and sugar beet factory lime.
    Beckers F; Mothes S; Abrigata J; Zhao J; Gao Y; Rinklebe J
    Sci Total Environ; 2019 Jul; 672():604-617. PubMed ID: 30970288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alkyl Mercury-Induced Toxicity: Multiple Mechanisms of Action.
    Risher JF; Tucker P
    Rev Environ Contam Toxicol; 2017; 240():105-149. PubMed ID: 27161558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PACAP27 regulates ciliary function in primary cultures of rat brain ependymal cells.
    Mönkkönen KS; Hirst RA; Laitinen JT; O'Callaghan C
    Neuropeptides; 2008; 42(5-6):633-40. PubMed ID: 18986701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A systematic study of the disposition and metabolism of mercury species in mice after exposure to low levels of thimerosal (ethylmercury).
    Carneiro MF; Oliveira Souza JM; Grotto D; Batista BL; de Oliveira Souza VC; Barbosa F
    Environ Res; 2014 Oct; 134():218-27. PubMed ID: 25173055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Reliable Method to Determine Monomethylmercury and Monoethylmercury Simultaneously in Aqueous Samples by GC-CVAFS After Distillation.
    Liu M; Gao Z; Chen L; Zhao W; Lu Q; Yang J; Ren L; Xu Z
    Arch Environ Contam Toxicol; 2018 Oct; 75(3):495-501. PubMed ID: 30069574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Live Imaging of the Ependymal Cilia in the Lateral Ventricles of the Mouse Brain.
    Al Omran AJ; Saternos HC; Liu T; Nauli SM; AbouAlaiwi WA
    J Vis Exp; 2015 Jun; (100):e52853. PubMed ID: 26067390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of methyl and ethyl mercury into inorganic mercury by various phagocytic cells.
    Suda I; Totoki S; Uchida T; Takahashi H
    Arch Toxicol; 1992; 66(1):40-4. PubMed ID: 1316116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amyloid-β slows cilia movement along the ventricle, impairs fluid flow, and exacerbates its neurotoxicity in explant culture.
    Makibatake R; Oda S; Yagi Y; Tatsumi H
    Sci Rep; 2023 Aug; 13(1):13586. PubMed ID: 37605005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relative roles of pneumolysin and hydrogen peroxide from Streptococcus pneumoniae in inhibition of ependymal ciliary beat frequency.
    Hirst RA; Sikand KS; Rutman A; Mitchell TJ; Andrew PW; O'Callaghan C
    Infect Immun; 2000 Mar; 68(3):1557-62. PubMed ID: 10678974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Milestone achievement and neurodevelopment of rural Amazonian toddlers (12 to 24 months) with different methylmercury and ethylmercury exposure.
    Dórea JG; Marques RC; Abreu L
    J Toxicol Environ Health A; 2014; 77(1-3):1-13. PubMed ID: 24555642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation of adenosine A2B receptors enhances ciliary beat frequency in mouse lateral ventricle ependymal cells.
    Genzen JR; Yang D; Ravid K; Bordey A
    Cerebrospinal Fluid Res; 2009 Nov; 6():15. PubMed ID: 19922651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of the pneumococcal toxin, pneumolysin on brain ependymal cilia.
    Mohammed BJ; Mitchell TJ; Andrew PW; Hirst RA; O'Callaghan C
    Microb Pathog; 1999 Nov; 27(5):303-9. PubMed ID: 10547234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The chemokine CCL2 protects against methylmercury neurotoxicity.
    Godefroy D; Gosselin RD; Yasutake A; Fujimura M; Combadière C; Maury-Brachet R; Laclau M; Rakwal R; Melik-Parsadaniantz S; Bourdineaud JP; Rostène W
    Toxicol Sci; 2012 Jan; 125(1):209-18. PubMed ID: 21976372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adenosine Stimulates Beating of Neonatal Brain-Derived Cilia through Adenosine A
    Kawaguchi K; Tsuji S; Hirao T; Liu Y; Boshi Z; Asano S
    Biol Pharm Bull; 2024; 47(6):1113-1118. PubMed ID: 38839362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.