These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27621220)

  • 1. 1,2-Dimethoxyethane Degradation Thermodynamics in Li-O
    Carboni M; Marrani AG; Spezia R; Brutti S
    Chemistry; 2016 Nov; 22(48):17188-17203. PubMed ID: 27621220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Solvents on the Behavior of Lithium and Superoxide Ions in Lithium-Oxygen Battery Electrolytes.
    Smirnov VS; Kislenko SA
    Chemphyschem; 2018 Jan; 19(1):75-81. PubMed ID: 29121449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dominant Decomposition Pathways for Ethereal Solvents in Li-O2 Batteries.
    García JM; Horn HW; Rice JE
    J Phys Chem Lett; 2015 May; 6(10):1795-9. PubMed ID: 26263250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Singlet Oxygen-Induced Degradation Pathways Including Environmental Effects of 1,2-Dimethoxyethane in Li-O
    Mullinax JW; Bauschlicher CW; Lawson JW
    J Phys Chem A; 2022 Nov; 126(43):7997-8006. PubMed ID: 36282880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical vs Electrochemical Formation of Li
    Yin W; Grimaud A; Lepoivre F; Yang C; Tarascon JM
    J Phys Chem Lett; 2017 Jan; 8(1):214-222. PubMed ID: 27960058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and Computational Analysis of the Solvent-Dependent O2/Li(+)-O2(-) Redox Couple: Standard Potentials, Coupling Strength, and Implications for Lithium-Oxygen Batteries.
    Kwabi DG; Bryantsev VS; Batcho TP; Itkis DM; Thompson CV; Shao-Horn Y
    Angew Chem Int Ed Engl; 2016 Feb; 55(9):3129-34. PubMed ID: 26822277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction chemistry in rechargeable Li-O
    Lim HD; Lee B; Bae Y; Park H; Ko Y; Kim H; Kim J; Kang K
    Chem Soc Rev; 2017 May; 46(10):2873-2888. PubMed ID: 28418060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life of superoxide in aprotic Li-O₂ battery electrolytes: simulated solvent and counter-ion effects.
    Scheers J; Lidberg D; Sodeyama K; Futera Z; Tateyama Y
    Phys Chem Chem Phys; 2016 Apr; 18(15):9961-8. PubMed ID: 26947132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of water on discharge product growth and chemistry in Li-O2 batteries.
    Kwabi DG; Batcho TP; Feng S; Giordano L; Thompson CV; Shao-Horn Y
    Phys Chem Chem Phys; 2016 Sep; 18(36):24944-53. PubMed ID: 27560806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical evidence of water serving as a promoter for lithium superoxide disproportionation in Li-O
    Shan N; Redfern PC; Ngo AT; Zapol P; Markovic N; Curtiss LA
    Phys Chem Chem Phys; 2021 May; 23(17):10440-10447. PubMed ID: 33890602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry.
    McCloskey BD; Bethune DS; Shelby RM; Girishkumar G; Luntz AC
    J Phys Chem Lett; 2011 May; 2(10):1161-6. PubMed ID: 26295320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the LiI Redox Mediation in Aprotic Li-O
    Petrongari A; Piacentini V; Pierini A; Fattibene P; De Angelis C; Bodo E; Brutti S
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59348-59357. PubMed ID: 38090803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential Solvation of Lithium Cations and Impacts on Oxygen Reduction in Lithium-Air Batteries.
    Zheng D; Qu D; Yang XQ; Lee HS; Qu D
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19923-9. PubMed ID: 26301499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2(•-)).
    Bryantsev VS; Giordani V; Walker W; Blanco M; Zecevic S; Sasaki K; Uddin J; Addison D; Chase GV
    J Phys Chem A; 2011 Nov; 115(44):12399-409. PubMed ID: 21962008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of a mixture of an ionic liquid and organic solvent on oxygen reduction reaction kinetics.
    Pavlov S; Danilova V; Sivakov V; Kislenko S
    Phys Chem Chem Phys; 2022 Jul; 24(27):16746-16754. PubMed ID: 35771039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limitations in Rechargeability of Li-O2 Batteries and Possible Origins.
    McCloskey BD; Bethune DS; Shelby RM; Mori T; Scheffler R; Speidel A; Sherwood M; Luntz AC
    J Phys Chem Lett; 2012 Oct; 3(20):3043-7. PubMed ID: 26292247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction of Singlet Oxygen with the Ethylene Group: Implications for Electrolyte Stability in Li-Ion and Li-O
    Mullinax JW; Bauschlicher CW; Lawson JW
    J Phys Chem A; 2021 Apr; 125(14):2876-2884. PubMed ID: 33823112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of water on the behaviour of lithium and superoxide ions in aprotic solvents.
    Sivakov V; Pavlov S; Smirnov V; Kislenko S
    Phys Chem Chem Phys; 2021 Oct; 23(39):22375-22383. PubMed ID: 34608477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries.
    McCloskey BD; Garcia JM; Luntz AC
    J Phys Chem Lett; 2014 Apr; 5(7):1230-5. PubMed ID: 26274476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-free lithium-oxygen batteries.
    Balaish M; Peled E; Golodnitsky D; Ein-Eli Y
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):436-40. PubMed ID: 25283299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.