These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 27621220)

  • 21. The Origin of Solvent Deprotonation in LiI-added Aprotic Electrolytes for Li-O
    Wang A; Wu X; Zou Z; Qiao Y; Wang D; Xing L; Chen Y; Lin Y; Avdeev M; Shi S
    Angew Chem Int Ed Engl; 2023 Mar; 62(14):e202217354. PubMed ID: 36749300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Li-biphenyl-1,2-dimethoxyethane solution: calculation and its application.
    Liu N; Li H; Jiang J; Huang X; Chen L
    J Phys Chem B; 2006 Jun; 110(21):10341-7. PubMed ID: 16722737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rate-Dependent Morphology of Li2O2 Growth in Li-O2 Batteries.
    Horstmann B; Gallant B; Mitchell R; Bessler WG; Shao-Horn Y; Bazant MZ
    J Phys Chem Lett; 2013 Dec; 4(24):4217-22. PubMed ID: 26296168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of Oxygen Mass Transport in Rechargeable Li/O2 Batteries Operating with Ionic Liquids.
    Monaco S; Soavi F; Mastragostino M
    J Phys Chem Lett; 2013 May; 4(9):1379-82. PubMed ID: 26282288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Operando observation of the gold-electrolyte interface in Li-O2 batteries.
    Gittleson FS; Ryu WH; Taylor AD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanistic Insight into the Superoxide Induced Ring Opening in Propylene Carbonate Based Electrolytes using in Situ Surface-Enhanced Infrared Spectroscopy.
    Vivek JP; Berry N; Papageorgiou G; Nichols RJ; Hardwick LJ
    J Am Chem Soc; 2016 Mar; 138(11):3745-51. PubMed ID: 26909538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stability of superoxide radicals in glyme solvents for non-aqueous Li-O2 battery electrolytes.
    Schwenke KU; Meini S; Wu X; Gasteiger HA; Piana M
    Phys Chem Chem Phys; 2013 Jul; 15(28):11830-9. PubMed ID: 23760527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium-Oxygen Batteries.
    Kwabi DG; Tułodziecki M; Pour N; Itkis DM; Thompson CV; Shao-Horn Y
    J Phys Chem Lett; 2016 Apr; 7(7):1204-12. PubMed ID: 26949979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characteristics of Lithium Ions and Superoxide Anions in EMI-TFSI and Dimethyl Sulfoxide.
    Jung SH; Federici Canova F; Akagi K
    J Phys Chem A; 2016 Jan; 120(3):364-71. PubMed ID: 26689893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries.
    Cao R; Walter ED; Xu W; Nasybulin EN; Bhattacharya P; Bowden ME; Engelhard MH; Zhang JG
    ChemSusChem; 2014 Sep; 7(9):2436-40. PubMed ID: 25045007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Stable Lithium-Oxygen Battery Electrolyte Based on Fully Methylated Cyclic Ether.
    Huang Z; Zeng H; Xie M; Lin X; Huang Z; Shen Y; Huang Y
    Angew Chem Int Ed Engl; 2019 Feb; 58(8):2345-2349. PubMed ID: 30589170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrolyte-controlled discharge product distribution of Na-O
    Wang B; Zhao N; Wang Y; Zhang W; Lu W; Guo X; Liu J
    Phys Chem Chem Phys; 2017 Jan; 19(4):2940-2949. PubMed ID: 28079211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries.
    Kim KC; Liu T; Lee SW; Jang SS
    J Am Chem Soc; 2016 Feb; 138(7):2374-82. PubMed ID: 26824616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct Detection of the Superoxide Anion as a Stable Intermediate in the Electroreduction of Oxygen in a Non-Aqueous Electrolyte Containing Phenol as a Proton Source.
    Peng Z; Chen Y; Bruce PG; Xu Y
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8165-8. PubMed ID: 26013064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte.
    Walker W; Giordani V; Uddin J; Bryantsev VS; Chase GV; Addison D
    J Am Chem Soc; 2013 Feb; 135(6):2076-9. PubMed ID: 23360567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trade-Offs in Capacity and Rechargeability in Nonaqueous Li-O2 Batteries: Solution-Driven Growth versus Nucleophilic Stability.
    Khetan A; Luntz A; Viswanathan V
    J Phys Chem Lett; 2015 Apr; 6(7):1254-9. PubMed ID: 26262983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Li[B(OCH2CF3)4]: synthesis, characterization and electrochemical application as a conducting salt for LiSB batteries.
    Rohde M; Eiden P; Leppert V; Schmidt M; Garsuch A; Semrau G; Krossing I
    Chemphyschem; 2015 Feb; 16(3):666-75. PubMed ID: 25521464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrolyte Reactivity in the Double Layer in Mg Batteries: An Interface Potential-Dependent DFT Study.
    Kopač Lautar A; Bitenc J; Rejec T; Dominko R; Filhol JS; Doublet ML
    J Am Chem Soc; 2020 Mar; 142(11):5146-5153. PubMed ID: 32031361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In operando spatiotemporal study of Li(2)O(2) grain growth and its distribution inside operating Li-O(2) batteries.
    Shui JL; Okasinski JS; Chen C; Almer JD; Liu DJ
    ChemSusChem; 2014 Feb; 7(2):543-8. PubMed ID: 24399807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of Porous δ-MnO2 Submicron Tubes as Highly Efficient Electrocatalyst for Rechargeable Li-O2 Batteries.
    Zhang P; Sun D; He M; Lang J; Xu S; Yan X
    ChemSusChem; 2015 Jun; 8(11):1972-9. PubMed ID: 25944388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.