These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 27621281)

  • 1. Spontaneous Reversions of an Evolutionary Trait Loss Reveal Regulators of a Small RNA That Controls Multicellular Development in Myxobacteria.
    Yu YN; Kleiner M; Velicer GJ
    J Bacteriol; 2016 Dec; 198(23):3142-3151. PubMed ID: 27621281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive evolution of an sRNA that controls Myxococcus development.
    Yu YT; Yuan X; Velicer GJ
    Science; 2010 May; 328(5981):993. PubMed ID: 20489016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergence of functional effects among bacterial sRNA paralogs.
    Chen IK; Velicer GJ; Yu YN
    BMC Evol Biol; 2017 Aug; 17(1):199. PubMed ID: 28830343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. sRNA-pathway genes regulating myxobacterial development exhibit clade-specific evolution.
    Chen IK; Satinsky BM; Velicer GJ; Yu YN
    Evol Dev; 2019 Mar; 21(2):82-95. PubMed ID: 30762281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conserved stem of the Myxococcus xanthus sRNA Pxr controls sRNA accumulation and multicellular development.
    Yu YN; Cooper E; Velicer GJ
    Sci Rep; 2017 Nov; 7(1):15411. PubMed ID: 29133885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orphan Hybrid Histidine Protein Kinase SinK Acts as a Signal Integrator To Fine-Tune Multicellular Behavior in
    Glaser MM; Higgs PI
    J Bacteriol; 2019 Mar; 201(6):. PubMed ID: 30617244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A recent evolutionary origin of a bacterial small RNA that controls multicellular fruiting body development.
    Chen IC; Griesenauer B; Yu YT; Velicer GJ
    Mol Phylogenet Evol; 2014 Apr; 73():1-9. PubMed ID: 24418530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. devI is an evolutionarily young negative regulator of Myxococcus xanthus development.
    Rajagopalan R; Wielgoss S; Lippert G; Velicer GJ; Kroos L
    J Bacteriol; 2015 Apr; 197(7):1249-62. PubMed ID: 25645563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual regulation with Ser/Thr kinase cascade and a His/Asp TCS in Myxococcus xanthus.
    Inouye S; Nariya H
    Adv Exp Med Biol; 2008; 631():111-21. PubMed ID: 18792684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel transcriptome patterns accompany evolutionary restoration of defective social development in the bacterium Myxococcus xanthus.
    Kadam SV; Wegener-Feldbrügge S; Søgaard-Andersen L; Velicer GJ
    Mol Biol Evol; 2008 Jul; 25(7):1274-81. PubMed ID: 18385222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus.
    Ueki T; Inouye S
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8782-7. PubMed ID: 12851461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ambruticin-sensing complex modulates Myxococcus xanthus development and mediates myxobacterial interspecies communication.
    Marcos-Torres FJ; Volz C; Müller R
    Nat Commun; 2020 Nov; 11(1):5563. PubMed ID: 33149152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myxococcus xanthus sasS encodes a sensor histidine kinase required for early developmental gene expression.
    Yang C; Kaplan HB
    J Bacteriol; 1997 Dec; 179(24):7759-67. PubMed ID: 9401035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancer-binding proteins with a forkhead-associated domain and the sigma54 regulon in Myxococcus xanthus fruiting body development.
    Jelsbak L; Givskov M; Kaiser D
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):3010-5. PubMed ID: 15668379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a putative flavin adenine dinucleotide-binding monooxygenase as a regulator for Myxococcus xanthus development.
    Cao S; Wu M; Xu S; Yan X; Mao X
    J Bacteriol; 2015 Apr; 197(7):1185-96. PubMed ID: 25605309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of spdR mutations that bypass the BsgA protease-dependent regulation of developmental gene expression in Myxococcus xanthus.
    Hager E; Tse H; Gill RE
    Mol Microbiol; 2001 Feb; 39(3):765-80. PubMed ID: 11169116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The
    Rajagopalan R; Kroos L
    J Bacteriol; 2017 May; 199(10):. PubMed ID: 28264995
    [No Abstract]   [Full Text] [Related]  

  • 18. A new sigma factor, SigD, essential for stationary phase is also required for multicellular differentiation in Myxococcus xanthus.
    Ueki T; Inouye S
    Genes Cells; 1998 Jun; 3(6):371-85. PubMed ID: 9734783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Pseudochelin Production in Myxococcus xanthus.
    Korp J; Winand L; Sester A; Nett M
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel regulation on developmental gene expression of fruiting body formation in Myxobacteria.
    Ueki T; Inouye S
    Appl Microbiol Biotechnol; 2006 Aug; 72(1):21-29. PubMed ID: 16791590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.