BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 27621727)

  • 1. Characterization and Strain Improvement of a Hypercellulytic Variant, Trichoderma reesei SN1, by Genetic Engineering for Optimized Cellulase Production in Biomass Conversion Improvement.
    Qian Y; Zhong L; Hou Y; Qu Y; Zhong Y
    Front Microbiol; 2016; 7():1349. PubMed ID: 27621727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.
    Li C; Lin F; Li Y; Wei W; Wang H; Qin L; Zhou Z; Li B; Wu F; Chen Z
    Microb Cell Fact; 2016 Sep; 15(1):151. PubMed ID: 27585813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a powerful synthetic hybrid promoter to improve the cellulase system of Trichoderma reesei for efficient saccharification of corncob residues.
    Wang Y; Liu R; Liu H; Li X; Shen L; Zhang W; Song X; Liu W; Liu X; Zhong Y
    Microb Cell Fact; 2022 Jan; 21(1):5. PubMed ID: 34983541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of the versatile cellulase for cellulose bioconversion and cellulase inducer synthesis by genetic improvement of
    Gao J; Qian Y; Wang Y; Qu Y; Zhong Y
    Biotechnol Biofuels; 2017; 10():272. PubMed ID: 29167702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of highly efficient cellulase mixtures by genetically exploiting the potentials of Trichoderma reesei endogenous cellulases for hydrolysis of corncob residues.
    Qian Y; Zhong L; Gao J; Sun N; Wang Y; Sun G; Qu Y; Zhong Y
    Microb Cell Fact; 2017 Nov; 16(1):207. PubMed ID: 29162107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the cellulolytic fungus Trichoderma reesei strain with enhanced beta-glucosidase and filter paper activity using strong artificial cellobiohydrolase 1 promoter.
    Zhang J; Zhong Y; Zhao X; Wang T
    Bioresour Technol; 2010 Dec; 101(24):9815-8. PubMed ID: 20708927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulase hyper-production by
    Li C; Lin F; Zhou L; Qin L; Li B; Zhou Z; Jin M; Chen Z
    Biotechnol Biofuels; 2017; 10():228. PubMed ID: 29034003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering
    Zheng F; Yang R; Cao Y; Zhang W; Lv X; Meng X; Zhong Y; Chen G; Zhou Q; Liu W
    J Agric Food Chem; 2020 Nov; 68(45):12671-12682. PubMed ID: 33140639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of an exotic thermotolerant β-glucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw.
    Dashtban M; Qin W
    Microb Cell Fact; 2012 May; 11():63. PubMed ID: 22607229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens.
    Ma L; Zhang J; Zou G; Wang C; Zhou Z
    Enzyme Microb Technol; 2011 Sep; 49(4):366-71. PubMed ID: 22112562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting overexpression of a heterologous β-glucosidase in Trichoderma reesei: fusion expression of the Neosartorya fischeri Bgl3A to cbh1 enhances the overall as well as individual cellulase activities.
    Xue X; Wu Y; Qin X; Ma R; Luo H; Su X; Yao B
    Microb Cell Fact; 2016 Jul; 15(1):122. PubMed ID: 27400964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of cellulase production in Trichoderma reesei RUT-C30 by comparative genomic screening.
    Liu P; Lin A; Zhang G; Zhang J; Chen Y; Shen T; Zhao J; Wei D; Wang W
    Microb Cell Fact; 2019 May; 18(1):81. PubMed ID: 31077201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of a high-efficiency cellulase complex via β-glucosidase engineering in Penicillium oxalicum.
    Yao G; Wu R; Kan Q; Gao L; Liu M; Yang P; Du J; Li Z; Qu Y
    Biotechnol Biofuels; 2016; 9():78. PubMed ID: 27034716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced cellulase production from Trichoderma reesei Rut-C30 by engineering with an artificial zinc finger protein library.
    Zhang F; Bai F; Zhao X
    Biotechnol J; 2016 Oct; 11(10):1282-1290. PubMed ID: 27578229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of cellulolytic enzyme components through engineering
    Li YH; Zhang XY; Zhang F; Peng LC; Zhang DB; Kondo A; Bai FW; Zhao XQ
    Biotechnol Biofuels; 2018; 11():49. PubMed ID: 29483942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass.
    Meng QS; Liu CG; Zhao XQ; Bai FW
    J Biotechnol; 2018 Nov; 285():56-63. PubMed ID: 30194052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous enhancement of the beta-exo synergism and exo-exo synergism in Trichoderma reesei cellulase to increase the cellulose degrading capability.
    Fang H; Zhao R; Li C; Zhao C
    Microb Cell Fact; 2019 Jan; 18(1):9. PubMed ID: 30657063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1.
    Zhang F; Zhao X; Bai F
    Bioresour Technol; 2018 Jan; 247():676-683. PubMed ID: 30060399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced cellulase production in Trichoderma reesei RUT C30 via constitution of minimal transcriptional activators.
    Zhang J; Zhang G; Wang W; Wang W; Wei D
    Microb Cell Fact; 2018 May; 17(1):75. PubMed ID: 29773074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational engineering of the
    Fonseca LM; Parreiras LS; Murakami MT
    Biotechnol Biofuels; 2020; 13():93. PubMed ID: 32461765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.