BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 27622154)

  • 1. Selected suitable seed cell, scaffold and growth factor could maximize the repair effect using tissue engineering method in spinal cord injury.
    Ji WC; Zhang XW; Qiu YS
    World J Exp Med; 2016 Aug; 6(3):58-62. PubMed ID: 27622154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury.
    Wang TG; Xu J; Zhu AH; Lu H; Miao ZN; Zhao P; Hui GZ; Wu WJ
    Neural Regen Res; 2016 Oct; 11(10):1670-1677. PubMed ID: 27904501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combination of GDNF and hUCMSC transplantation loaded on SF/AGs composite scaffolds for spinal cord injury repair.
    Jiao G; Lou G; Mo Y; Pan Y; Zhang Z; Guo R; Li Z
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():230-237. PubMed ID: 28254289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury.
    Wang N; Xiao Z; Zhao Y; Wang B; Li X; Li J; Dai J
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1154-e1163. PubMed ID: 28482124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Experimental study on bone marrow mesenchymal stem cells seeded in chitosan-alginate scaffolds for repairing spinal cord injury].
    Wang D; Wen Y; Lan X; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Feb; 24(2):190-6. PubMed ID: 20187451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly (D,L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord.
    Hurtado A; Moon LD; Maquet V; Blits B; Jérôme R; Oudega M
    Biomaterials; 2006 Jan; 27(3):430-42. PubMed ID: 16102815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair.
    Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J
    Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bridging SF/Alg composite scaffold loaded NGF for spinal cord injury repair.
    Jiao G; Pan Y; Wang C; Li Z; Li Z; Guo R
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():81-87. PubMed ID: 28482594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Biomaterials engineering strategies for spinal cord regeneration: state of the art].
    Lis A; Szarek D; Laska J
    Polim Med; 2013; 43(2):59-80. PubMed ID: 24044287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord.
    Lai BQ; Che MT; Du BL; Zeng X; Ma YH; Feng B; Qiu XC; Zhang K; Liu S; Shen HY; Wu JL; Ling EA; Zeng YS
    Biomaterials; 2016 Dec; 109():40-54. PubMed ID: 27665078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility study of a silk fibroin-chitosan scaffold with adipose tissue-derived stem cells
    Ji W; Zhang Y; Hu S; Zhang Y
    Exp Ther Med; 2013 Aug; 6(2):513-518. PubMed ID: 24137218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time?
    Harvey AR; Lovett SJ; Majda BT; Yoon JH; Wheeler LP; Hodgetts SI
    Brain Res; 2015 Sep; 1619():36-71. PubMed ID: 25451132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury.
    Bregman BS; Coumans JV; Dai HN; Kuhn PL; Lynskey J; McAtee M; Sandhu F
    Prog Brain Res; 2002; 137():257-73. PubMed ID: 12440372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New serum-derived albumin scaffold seeded with adipose-derived stem cells and olfactory ensheathing cells used to treat spinal cord injured rats.
    Ferrero-Gutierrez A; Menendez-Menendez Y; Alvarez-Viejo M; Meana A; Otero J
    Histol Histopathol; 2013 Jan; 28(1):89-100. PubMed ID: 23233062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-seeded porous silk fibroin scaffolds promotes axonal regeneration and myelination in spinal cord injury rats.
    You K; Chang H; Zhang F; Shen Y; Zhang Y; Cai F; Liu L; Liu X
    Biochem Biophys Res Commun; 2019 Jun; 514(1):273-279. PubMed ID: 31030943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury.
    Zhang S; Wang XJ; Li WS; Xu XL; Hu JB; Kang XQ; Qi J; Ying XY; You J; Du YZ
    Acta Biomater; 2018 Sep; 77():15-27. PubMed ID: 30126591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Schwann cell p75NTR prevents spontaneous sensory reinnervation of the adult spinal cord.
    Scott AL; Ramer MS
    Brain; 2010 Feb; 133(Pt 2):421-32. PubMed ID: 20047901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection.
    Qiu XC; Jin H; Zhang RY; Ding Y; Zeng X; Lai BQ; Ling EA; Wu JL; Zeng YS
    Stem Cell Res Ther; 2015 May; 6(1):105. PubMed ID: 26012641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury.
    Li G; Che MT; Zhang K; Qin LN; Zhang YT; Chen RQ; Rong LM; Liu S; Ding Y; Shen HY; Long SM; Wu JL; Ling EA; Zeng YS
    Biomaterials; 2016 Mar; 83():233-48. PubMed ID: 26774562
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.