BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 27622307)

  • 1. Near infrared hyperspectral imaging in quality and safety evaluation of cereals.
    Sendin K; Williams PJ; Manley M
    Crit Rev Food Sci Nutr; 2018 Mar; 58(4):575-590. PubMed ID: 27622307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of single kernel conventional and hyperspectral imaging near infrared spectroscopy in cereals.
    Fox G; Manley M
    J Sci Food Agric; 2014 Jan; 94(2):174-9. PubMed ID: 24038031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation and transferability study of a method based on near-infrared hyperspectral imaging for the detection and quantification of ergot bodies in cereals.
    Vermeulen P; Fernández Pierna JA; van Egmond HP; Zegers J; Dardenne P; Baeten V
    Anal Bioanal Chem; 2013 Sep; 405(24):7765-72. PubMed ID: 23404130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review.
    Elmasry G; Kamruzzaman M; Sun DW; Allen P
    Crit Rev Food Sci Nutr; 2012; 52(11):999-1023. PubMed ID: 22823348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online detection and quantification of particles of ergot bodies in cereal flour using near-infrared hyperspectral imaging.
    Vermeulen P; Ebene MB; Orlando B; Fernández Pierna JA; Baeten V
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Aug; 34(8):1312-1319. PubMed ID: 28580874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-destructive techniques for the detection of fungal infection in cereal grains.
    Orina I; Manley M; Williams PJ
    Food Res Int; 2017 Oct; 100(Pt 1):74-86. PubMed ID: 28873744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperspectral imaging for the classification of individual cereal kernels according to fungal and mycotoxins contamination: A review.
    Femenias A; Gatius F; Ramos AJ; Teixido-Orries I; Marín S
    Food Res Int; 2022 May; 155():111102. PubMed ID: 35400475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.
    Manley M
    Chem Soc Rev; 2014 Dec; 43(24):8200-14. PubMed ID: 25156745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel, non-destructive cereal quality analysis: potential for triticale.
    Manley M
    Commun Agric Appl Biol Sci; 2014; 79(4):129-38. PubMed ID: 26072581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein content prediction in single wheat kernels using hyperspectral imaging.
    Caporaso N; Whitworth MB; Fisk ID
    Food Chem; 2018 Feb; 240():32-42. PubMed ID: 28946278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nondestructive spectroscopic and imaging techniques for quality evaluation and assessment of fish and fish products.
    He HJ; Wu D; Sun DW
    Crit Rev Food Sci Nutr; 2015; 55(6):864-86. PubMed ID: 24915393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research advancements in optical imaging and spectroscopic techniques for nondestructive detection of mold infection and mycotoxins in cereal grains and nuts.
    Mishra G; Panda BK; Ramirez WA; Jung H; Singh CB; Lee SH; Lee I
    Compr Rev Food Sci Food Saf; 2021 Sep; 20(5):4612-4651. PubMed ID: 34338431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research advances in imaging technology for food safety and quality control].
    Deng Y; Wang X; Yang M; He M; Zhang F
    Se Pu; 2020 Jul; 38(7):741-749. PubMed ID: 34213280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meat quality evaluation by hyperspectral imaging technique: an overview.
    Elmasry G; Barbin DF; Sun DW; Allen P
    Crit Rev Food Sci Nutr; 2012; 52(8):689-711. PubMed ID: 22591341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting micronutrients of wheat using hyperspectral imaging.
    Hu N; Li W; Du C; Zhang Z; Gao Y; Sun Z; Yang L; Yu K; Zhang Y; Wang Z
    Food Chem; 2021 May; 343():128473. PubMed ID: 33160768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of grain topography on near infrared hyperspectral images.
    Manley M; McGoverin CM; Engelbrecht P; Geladi P
    Talanta; 2012 Jan; 89():223-30. PubMed ID: 22284484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on the applications of portable near-infrared spectrometers in the agro-food industry.
    dos Santos CA; Lopo M; Páscoa RN; Lopes JA
    Appl Spectrosc; 2013 Nov; 67(11):1215-33. PubMed ID: 24160873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research Process on Hyperspectral Imaging Detection Technology for the Quality and Safety of Grain and Oils].
    Yu HW; Wang Q; Liu L; Shi AM; Hu H; Liu HZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3643-50. PubMed ID: 30199206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize.
    Janni J; Weinstock BA; Hagen L; Wright S
    Appl Spectrosc; 2008 Apr; 62(4):423-6. PubMed ID: 18416901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Ability of Near Infrared (NIR) Spectroscopy to Predict Functional Properties in Foods: Challenges and Opportunities.
    Cozzolino D
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.