BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 27622307)

  • 41. Near-infrared reflectance model for the rapid prediction of total fat in cereal foods.
    Vines LL; Kays SE; Koehler PE
    J Agric Food Chem; 2005 Mar; 53(5):1550-5. PubMed ID: 15740039
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advanced Analysis of Roots and Tubers by Hyperspectral Techniques.
    Su WH; Sun DW
    Adv Food Nutr Res; 2019; 87():255-303. PubMed ID: 30678816
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Application and recent development of research on near-infrared spectroscopy for meat quality evaluation].
    Xu X; Cheng F; Ying YB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jul; 29(7):1876-80. PubMed ID: 19798962
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Applications of hyperspectral imaging in chicken meat safety and quality detection and evaluation: a review.
    Xiong Z; Xie A; Sun DW; Zeng XA; Liu D
    Crit Rev Food Sci Nutr; 2015; 55(9):1287-301. PubMed ID: 24689678
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of near-infrared spectroscopy for the nondestructive analysis of wheat flour: A review.
    Zhang S; Liu S; Shen L; Chen S; He L; Liu A
    Curr Res Food Sci; 2022; 5():1305-1312. PubMed ID: 36065198
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monitoring fungal growth on brown rice grains using rapid and non-destructive hyperspectral imaging.
    Siripatrawan U; Makino Y
    Int J Food Microbiol; 2015 Apr; 199():93-100. PubMed ID: 25662486
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Penetration Depth Measurement of Near-Infrared Hyperspectral Imaging Light for Milk Powder.
    Huang M; Kim MS; Chao K; Qin J; Mo C; Esquerre C; Delwiche S; Zhu Q
    Sensors (Basel); 2016 Mar; 16(4):441. PubMed ID: 27023555
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tracking diffusion of conditioning water in single wheat kernels of different hardnesses by near infrared hyperspectral imaging.
    Manley M; du Toit G; Geladi P
    Anal Chim Acta; 2011 Feb; 686(1-2):64-75. PubMed ID: 21237309
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Principles of Hyperspectral Microscope Imaging Techniques and Their Applications in Food Quality and Safety Detection: A Review.
    Pu H; Lin L; Sun DW
    Compr Rev Food Sci Food Saf; 2019 Jul; 18(4):853-866. PubMed ID: 33337001
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of pregerminated barley using hyperspectral image analysis.
    Arngren M; Hansen PW; Eriksen B; Larsen J; Larsen R
    J Agric Food Chem; 2011 Nov; 59(21):11385-94. PubMed ID: 21932866
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Near-Infrared Hyperspectral Imaging Pipelines for Pasture Seed Quality Evaluation: An Overview.
    Reddy P; Guthridge KM; Panozzo J; Ludlow EJ; Spangenberg GC; Rochfort SJ
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271127
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Integration of textural and spectral features of Raman hyperspectral imaging for quantitative determination of a single maize kernel mildew coupled with chemometrics.
    Long Y; Huang W; Wang Q; Fan S; Tian X
    Food Chem; 2022 Mar; 372():131246. PubMed ID: 34818727
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nondestructive Detection and Quantification of Blueberry Bruising using Near-infrared (NIR) Hyperspectral Reflectance Imaging.
    Jiang Y; Li C; Takeda F
    Sci Rep; 2016 Oct; 6():35679. PubMed ID: 27767050
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quality and Safety Aspects of Cereals (Wheat) and Their Products.
    Varzakas T
    Crit Rev Food Sci Nutr; 2016 Nov; 56(15):2495-2510. PubMed ID: 25830822
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality.
    Ren G; Wang Y; Ning J; Zhang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 237():118407. PubMed ID: 32361218
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent developments and applications of hyperspectral imaging for quality evaluation of agricultural products: a review.
    Liu D; Zeng XA; Sun DW
    Crit Rev Food Sci Nutr; 2015; 55(12):1744-57. PubMed ID: 24915395
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Method for the Discrimination of the Variety of Potatoes with Vis/NIR Spectroscopy].
    Chen ZG; Li X; Fan X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2474-8. PubMed ID: 30074349
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel high-throughput hyperspectral scanner and analytical methods for predicting maize kernel composition and physical traits.
    Varela JI; Miller ND; Infante V; Kaeppler SM; de Leon N; Spalding EP
    Food Chem; 2022 Oct; 391():133264. PubMed ID: 35643019
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hyperspectral imaging in combination with data fusion for rapid evaluation of tilapia fillet freshness.
    Yu HD; Qing LW; Yan DT; Xia G; Zhang C; Yun YH; Zhang W
    Food Chem; 2021 Jun; 348():129129. PubMed ID: 33515952
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Application of near-infrared spectroscopy to quality detection of milk and its products].
    Wang J; Wang JQ; Bu DP; Guo WJ; Shen JS; Wei HY; Zhou LY; Liu KL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 May; 29(5):1281-5. PubMed ID: 19650471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.