BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 27622525)

  • 21. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics.
    Dubrovkin AM; Qiang B; Krishnamoorthy HNS; Zheludev NI; Wang QJ
    Nat Commun; 2018 May; 9(1):1762. PubMed ID: 29720587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons.
    Rivera N; Rosolen G; Joannopoulos JD; Kaminer I; Soljačić M
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13607-13612. PubMed ID: 29233942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resonant nanostructures for highly confined and ultra-sensitive surface phonon-polaritons.
    Dubrovkin AM; Qiang B; Salim T; Nam D; Zheludev NI; Wang QJ
    Nat Commun; 2020 Apr; 11(1):1863. PubMed ID: 32313010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hyperbolic phonon polariton resonances in calcite nanopillars.
    Breslin VM; Ratchford DC; Giles AJ; Dunkelberger AD; Owrutsky JC
    Opt Express; 2021 Apr; 29(8):11760-11772. PubMed ID: 33984951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manipulation of surface phonon polaritons in SiC nanorods.
    Li Y; Qi R; Shi R; Li N; Gao P
    Sci Bull (Beijing); 2020 May; 65(10):820-826. PubMed ID: 36659200
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles.
    Francoeur M; Basu S; Petersen SJ
    Opt Express; 2011 Sep; 19(20):18774-88. PubMed ID: 21996819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong Coupling of Epsilon-Near-Zero Phonon Polaritons in Polar Dielectric Heterostructures.
    Passler NC; Gubbin CR; Folland TG; Razdolski I; Katzer DS; Storm DF; Wolf M; De Liberato S; Caldwell JD; Paarmann A
    Nano Lett; 2018 Jul; 18(7):4285-4292. PubMed ID: 29894195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrothermal Control of Graphene Plasmon-Phonon Polaritons.
    Guo Q; Guinea F; Deng B; Sarpkaya I; Li C; Chen C; Ling X; Kong J; Xia F
    Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28621022
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas.
    Pons-Valencia P; Alfaro-Mozaz FJ; Wiecha MM; Biolek V; Dolado I; Vélez S; Li P; Alonso-González P; Casanova F; Hueso LE; Martín-Moreno L; Hillenbrand R; Nikitin AY
    Nat Commun; 2019 Jul; 10(1):3242. PubMed ID: 31324759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic and Interferometric Sum-Frequency Imaging of Strongly Coupled Phonon Polaritons in SiC Metasurfaces.
    Niemann R; Mueller NS; Wasserroth S; Lu G; Wolf M; Caldwell JD; Paarmann A
    Adv Mater; 2024 Jun; ():e2312507. PubMed ID: 38895889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures.
    Ratchford DC; Winta CJ; Chatzakis I; Ellis CT; Passler NC; Winterstein J; Dev P; Razdolski I; Matson JR; Nolen JR; Tischler JG; Vurgaftman I; Katz MB; Nepal N; Hardy MT; Hachtel JA; Idrobo JC; Reinecke TL; Giles AJ; Katzer DS; Bassim ND; Stroud RM; Wolf M; Paarmann A; Caldwell JD
    ACS Nano; 2019 Jun; 13(6):6730-6741. PubMed ID: 31184132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photonic thermal diode enabled by surface polariton coupling in nanostructures.
    Tang L; Francoeur M
    Opt Express; 2017 Nov; 25(24):A1043-A1052. PubMed ID: 29220982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Terahertz near-field imaging of dielectric resonators.
    Lee WS; Kaltenecker K; Nirantar S; Withayachumnankul W; Walther M; Bhaskaran M; Fischer BM; Sriram S; Fumeaux C
    Opt Express; 2017 Feb; 25(4):3756-3764. PubMed ID: 28241587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Designing dielectric resonators on substrates: combining magnetic and electric resonances.
    van de Groep J; Polman A
    Opt Express; 2013 Nov; 21(22):26285-302. PubMed ID: 24216852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Refractive Index-Based Control of Hyperbolic Phonon-Polariton Propagation.
    Fali A; White ST; Folland TG; He M; Aghamiri NA; Liu S; Edgar JH; Caldwell JD; Haglund RF; Abate Y
    Nano Lett; 2019 Nov; 19(11):7725-7734. PubMed ID: 31650843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strong and Coherent Coupling between Localized and Propagating Phonon Polaritons.
    Gubbin CR; Martini F; Politi A; Maier SA; De Liberato S
    Phys Rev Lett; 2016 Jun; 116(24):246402. PubMed ID: 27367398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Broadband plasmonic indium arsenide photonic antennas.
    Liu X; Xue M; Chen J
    Nanoscale; 2023 Feb; 15(7):3135-3141. PubMed ID: 36723044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature-induced surface phonon polaritons dissipation in perovskite SrTiO
    Yang JY; Cheng T; Fei T; Zhang C; Liu L
    Opt Lett; 2021 Sep; 46(17):4244-4247. PubMed ID: 34469985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Grating-coupled Otto configuration for hybridized surface phonon polariton excitation for local refractive index sensitivity enhancement.
    Pechprasarn S; Learkthanakhachon S; Zheng G; Shen H; Lei DY; Somekh MG
    Opt Express; 2016 Aug; 24(17):19517-30. PubMed ID: 27557229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy.
    Huber AJ; Ocelic N; Hillenbrand R
    J Microsc; 2008 Mar; 229(Pt 3):389-95. PubMed ID: 18331484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.