These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 27622533)

  • 1. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding.
    Paramelle D; Peng T; Free P; Fernig DG; Lim S; Tomczak N
    PLoS One; 2016; 11(9):e0162848. PubMed ID: 27622533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing non-native iron-binding site on a protein cage for biological synthesis of nanoparticles.
    Peng T; Paramelle D; Sana B; Lee CF; Lim S
    Small; 2014 Aug; 10(15):3131-8. PubMed ID: 24788938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the self-assembly of proteins onto gold nanoparticles and quantum dots driven by metal-histidine coordination.
    Aldeek F; Safi M; Zhan N; Palui G; Mattoussi H
    ACS Nano; 2013 Nov; 7(11):10197-210. PubMed ID: 24134196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic assembly of binary nanoparticle superlattices using protein cages.
    Kostiainen MA; Hiekkataipale P; Laiho A; Lemieux V; Seitsonen J; Ruokolainen J; Ceci P
    Nat Nanotechnol; 2013 Jan; 8(1):52-6. PubMed ID: 23241655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trimer-based design of pH-responsive protein cage results in soluble disassembled structures.
    Peng T; Lim S
    Biomacromolecules; 2011 Sep; 12(9):3131-8. PubMed ID: 21797220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled peptide beads used as a template for ordered gold nanoparticle superstructures.
    de Bruyn Ouboter D; Schuster TB; Sigg SJ; Meier WP
    Colloids Surf B Biointerfaces; 2013 Dec; 112():542-7. PubMed ID: 24099645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-affinity gold nanoparticle pin to label and localize histidine-tagged protein in macromolecular assemblies.
    Anthony KC; You C; Piehler J; Pomeranz Krummel DA
    Structure; 2014 Apr; 22(4):628-35. PubMed ID: 24560806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmentally responsive histidine-carboxylate zipper formation between proteins and nanoparticles.
    Mout R; Tonga GY; Ray M; Moyano DF; Xing Y; Rotello VM
    Nanoscale; 2014 Aug; 6(15):8873-7. PubMed ID: 24960536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathways for Gold Nucleation and Growth over Protein Cages.
    Zhou Z; Bedwell GJ; Li R; Palchoudhury S; Prevelige PE; Gupta A
    Langmuir; 2017 Jun; 33(23):5925-5931. PubMed ID: 28514857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying assembly-inhibiting and assembly-tolerant sites in the SbsB S-layer protein from Geobacillus stearothermophilus.
    Kinns H; Badelt-Lichtblau H; Egelseer EM; Sleytr UB; Howorka S
    J Mol Biol; 2010 Jan; 395(4):742-53. PubMed ID: 19836402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a histidine-targeted spectrophotometric sensor using Ni(II)NTA-functionalized Au and Ag nanoparticles.
    Swartz JD; Gulka CP; Haselton FR; Wright DW
    Langmuir; 2011 Dec; 27(24):15330-9. PubMed ID: 22026818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid gold nanoparticle-quantum dot self-assembled nanostructures driven by complementary artificial proteins.
    Fernandez M; Urvoas A; Even-Hernandez P; Burel A; Mériadec C; Artzner F; Bouceba T; Minard P; Dujardin E; Marchi V
    Nanoscale; 2020 Feb; 12(7):4612-4621. PubMed ID: 32043516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoparticle capture within protein crystal scaffolds.
    Kowalski AE; Huber TR; Ni TW; Hartje LF; Appel KL; Yost JW; Ackerson CJ; Snow CD
    Nanoscale; 2016 Jul; 8(25):12693-6. PubMed ID: 27264210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct control of the spatial arrangement of gold nanoparticles in organic-inorganic hybrid superstructures.
    Hermes JP; Sander F; Peterle T; Cioffi C; Ringler P; Pfohl T; Mayor M
    Small; 2011 Apr; 7(7):920-9. PubMed ID: 21394907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface effects in water-soluble shell-core hybrid gold nanoparticles in oligonucleotide single strand recognition for sequence-specific bioactivation.
    Zahavy E; Whitesell JK; Fox MA
    Langmuir; 2010 Nov; 26(21):16442-6. PubMed ID: 20677767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive adsorption of thiolated poly(ethylene glycol) and alkane-thiols on gold nanoparticles and its effect on cluster formation.
    Larson-Smith K; Pozzo DC
    Langmuir; 2012 Sep; 28(37):13157-65. PubMed ID: 22924831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical investigation of the electron transfer protein azurin-gold nanoparticle system.
    Delfino I; Cannistraro S
    Biophys Chem; 2009 Jan; 139(1):1-7. PubMed ID: 18938024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein Cages as Containers for Gold Nanoparticles.
    Liu A; Verwegen M; de Ruiter MV; Maassen SJ; Traulsen CH; Cornelissen JJ
    J Phys Chem B; 2016 Jul; 120(26):6352-7. PubMed ID: 27135176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emulsions-directed assembly of gold nanoparticles to molecularly-linked and size-controlled spherical aggregates.
    Hussain I; Zhang H; Brust M; Barauskas J; Cooper AI
    J Colloid Interface Sci; 2010 Oct; 350(1):368-72. PubMed ID: 20609445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.