These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 27622541)
1. Development and evaluation of a removable tissue-engineered muscle with artificial tendons. Nakamura T; Takagi S; Kamon T; Yamasaki KI; Fujisato T J Biosci Bioeng; 2017 Feb; 123(2):265-271. PubMed ID: 27622541 [TBL] [Abstract][Full Text] [Related]
2. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells. Sato M; Ito A; Kawabe Y; Nagamori E; Kamihira M J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of scaffold-free contractile skeletal muscle tissue using magnetite-incorporated myogenic C2C12 cells. Fujita H; Shimizu K; Yamamoto Y; Ito A; Kamihira M; Nagamori E J Tissue Eng Regen Med; 2010 Aug; 4(6):437-43. PubMed ID: 20084621 [TBL] [Abstract][Full Text] [Related]
4. Effect of cell-extracellular matrix interaction on myogenic characteristics and artificial skeletal muscle tissue. Ding R; Horie M; Nagasaka S; Ohsumi S; Shimizu K; Honda H; Nagamori E; Fujita H; Kawamoto T J Biosci Bioeng; 2020 Jul; 130(1):98-105. PubMed ID: 32278672 [TBL] [Abstract][Full Text] [Related]
5. Preparation of artificial skeletal muscle tissues by a magnetic force-based tissue engineering technique. Yamamoto Y; Ito A; Kato M; Kawabe Y; Shimizu K; Fujita H; Nagamori E; Kamihira M J Biosci Bioeng; 2009 Dec; 108(6):538-43. PubMed ID: 19914590 [TBL] [Abstract][Full Text] [Related]
6. Optimizing the structure and contractility of engineered skeletal muscle thin films. Sun Y; Duffy R; Lee A; Feinberg AW Acta Biomater; 2013 Aug; 9(8):7885-94. PubMed ID: 23632372 [TBL] [Abstract][Full Text] [Related]
7. Cell Density and Joint microRNA-133a and microRNA-696 Inhibition Enhance Differentiation and Contractile Function of Engineered Human Skeletal Muscle Tissues. Cheng CS; Ran L; Bursac N; Kraus WE; Truskey GA Tissue Eng Part A; 2016 Apr; 22(7-8):573-83. PubMed ID: 26891613 [TBL] [Abstract][Full Text] [Related]
8. Cyclic mechanical preconditioning improves engineered muscle contraction. Moon du G; Christ G; Stitzel JD; Atala A; Yoo JJ Tissue Eng Part A; 2008 Apr; 14(4):473-82. PubMed ID: 18399787 [TBL] [Abstract][Full Text] [Related]
9. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts. Ito A; Yamamoto M; Ikeda K; Sato M; Kawabe Y; Kamihira M J Biosci Bioeng; 2015 May; 119(5):596-603. PubMed ID: 25454061 [TBL] [Abstract][Full Text] [Related]
10. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809 [TBL] [Abstract][Full Text] [Related]
11. Effect of heat stress on contractility of tissue-engineered artificial skeletal muscle. Takagi S; Nakamura T; Fujisato T J Artif Organs; 2018 Jun; 21(2):207-214. PubMed ID: 29362934 [TBL] [Abstract][Full Text] [Related]
13. Novel method for fabrication of skeletal muscle construct from the C2C12 myoblast cell line using serum-free medium AIM-V. Fujita H; Shimizu K; Nagamori E Biotechnol Bioeng; 2009 Aug; 103(5):1034-41. PubMed ID: 19350625 [TBL] [Abstract][Full Text] [Related]
14. In vitro drug testing based on contractile activity of C2C12 cells in an epigenetic drug model. Ikeda K; Ito A; Imada R; Sato M; Kawabe Y; Kamihira M Sci Rep; 2017 Mar; 7():44570. PubMed ID: 28300163 [TBL] [Abstract][Full Text] [Related]
15. Synergy between myogenic and non-myogenic cells in a 3D tissue-engineered craniofacial skeletal muscle construct. Brady MA; Lewis MP; Mudera V J Tissue Eng Regen Med; 2008 Oct; 2(7):408-17. PubMed ID: 18720445 [TBL] [Abstract][Full Text] [Related]
16. Effects of heat stimulation and l-ascorbic acid 2-phosphate supplementation on myogenic differentiation of artificial skeletal muscle tissue constructs. Ikeda K; Ito A; Sato M; Kanno S; Kawabe Y; Kamihira M J Tissue Eng Regen Med; 2017 May; 11(5):1322-1331. PubMed ID: 26033935 [TBL] [Abstract][Full Text] [Related]
17. Rapid formation of functional muscle in vitro using fibrin gels. Huang YC; Dennis RG; Larkin L; Baar K J Appl Physiol (1985); 2005 Feb; 98(2):706-13. PubMed ID: 15475606 [TBL] [Abstract][Full Text] [Related]
18. In vivo tendon engineering with skeletal muscle derived cells in a mouse model. Chen B; Wang B; Zhang WJ; Zhou G; Cao Y; Liu W Biomaterials; 2012 Sep; 33(26):6086-97. PubMed ID: 22672832 [TBL] [Abstract][Full Text] [Related]
19. Effects of a combined mechanical stimulation protocol: Value for skeletal muscle tissue engineering. Boonen KJ; Langelaan ML; Polak RB; van der Schaft DW; Baaijens FP; Post MJ J Biomech; 2010 May; 43(8):1514-21. PubMed ID: 20189177 [TBL] [Abstract][Full Text] [Related]
20. Engineering a 3D in vitro model of human skeletal muscle at the single fiber scale. Urciuolo A; Serena E; Ghua R; Zatti S; Giomo M; Mattei N; Vetralla M; Selmin G; Luni C; Vitulo N; Valle G; Vitiello L; Elvassore N PLoS One; 2020; 15(5):e0232081. PubMed ID: 32374763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]