BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 27622691)

  • 21. Inhibition of Oct 3/4 mitigates the cardiac progenitor-derived myocardial repair in infarcted myocardium.
    Zhao YT; Du J; Chen Y; Tang Y; Qin G; Lv G; Zhuang S; Zhao TC
    Stem Cell Res Ther; 2015 Dec; 6():259. PubMed ID: 26704423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct cardiac reprogramming: from developmental biology to cardiac regeneration.
    Qian L; Srivastava D
    Circ Res; 2013 Sep; 113(7):915-21. PubMed ID: 24030021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A collagen hydrogel loaded with HDAC7-derived peptide promotes the regeneration of infarcted myocardium with functional improvement in a rodent model.
    Zhang Y; Zhu D; Wei Y; Wu Y; Cui W; Liuqin L; Fan G; Yang Q; Wang Z; Xu Z; Kong D; Zeng L; Zhao Q
    Acta Biomater; 2019 Mar; 86():223-234. PubMed ID: 30660010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prenatal hypoxia-induced epigenomic and transcriptomic reprogramming in rat fetal and adult offspring hearts.
    Chen X; Zhang L; Wang C
    Sci Data; 2019 Oct; 6(1):238. PubMed ID: 31664036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cardiac reprogramming: from mouse toward man.
    Srivastava D; Berry EC
    Curr Opin Genet Dev; 2013 Oct; 23(5):574-8. PubMed ID: 23993230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart.
    Honkoop H; de Bakker DE; Aharonov A; Kruse F; Shakked A; Nguyen PD; de Heus C; Garric L; Muraro MJ; Shoffner A; Tessadori F; Peterson JC; Noort W; Bertozzi A; Weidinger G; Posthuma G; Grün D; van der Laarse WJ; Klumperman J; Jaspers RT; Poss KD; van Oudenaarden A; Tzahor E; Bakkers J
    Elife; 2019 Dec; 8():. PubMed ID: 31868166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors.
    Ieda M; Fu JD; Delgado-Olguin P; Vedantham V; Hayashi Y; Bruneau BG; Srivastava D
    Cell; 2010 Aug; 142(3):375-86. PubMed ID: 20691899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte.
    Liu Z; Wang L; Welch JD; Ma H; Zhou Y; Vaseghi HR; Yu S; Wall JB; Alimohamadi S; Zheng M; Yin C; Shen W; Prins JF; Liu J; Qian L
    Nature; 2017 Nov; 551(7678):100-104. PubMed ID: 29072293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dedifferentiation and proliferation of mammalian cardiomyocytes.
    Zhang Y; Li TS; Lee ST; Wawrowsky KA; Cheng K; Galang G; Malliaras K; Abraham MR; Wang C; Marbán E
    PLoS One; 2010 Sep; 5(9):e12559. PubMed ID: 20838637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in direct cardiac reprogramming.
    Srivastava D; Yu P
    Curr Opin Genet Dev; 2015 Oct; 34():77-81. PubMed ID: 26454285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cardiac interstitial cells express GATA4 and control dedifferentiation and cell cycle re-entry of adult cardiomyocytes.
    Zaglia T; Dedja A; Candiotto C; Cozzi E; Schiaffino S; Ausoni S
    J Mol Cell Cardiol; 2009 May; 46(5):653-62. PubMed ID: 19162035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function.
    Jayawardena TM; Finch EA; Zhang L; Zhang H; Hodgkinson CP; Pratt RE; Rosenberg PB; Mirotsou M; Dzau VJ
    Circ Res; 2015 Jan; 116(3):418-24. PubMed ID: 25351576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endogenous cardiac stem cells.
    Barile L; Messina E; Giacomello A; Marbán E
    Prog Cardiovasc Dis; 2007; 50(1):31-48. PubMed ID: 17631436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice.
    Chen Y; Lüttmann FF; Schoger E; Schöler HR; Zelarayán LC; Kim KP; Haigh JJ; Kim J; Braun T
    Science; 2021 Sep; 373(6562):1537-1540. PubMed ID: 34554778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells.
    Pasha Z; Haider HKh; Ashraf M
    PLoS One; 2011; 6(8):e23667. PubMed ID: 21886809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonocclusive multivessel intracoronary infusion of allogeneic cardiosphere-derived cells early after reperfusion prevents remote zone myocyte loss and improves global left ventricular function in swine with myocardial infarction.
    Suzuki G; Weil BR; Young RF; Fallavollita JA; Canty JM
    Am J Physiol Heart Circ Physiol; 2019 Aug; 317(2):H345-H356. PubMed ID: 31125261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myocardial regeneration: the role of progenitor cells derived from bone marrow and heart.
    Wang X; From AH; Zhang J
    Prog Mol Biol Transl Sci; 2012; 111():195-215. PubMed ID: 22917232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications.
    Sadahiro T; Yamanaka S; Ieda M
    Circ Res; 2015 Apr; 116(8):1378-91. PubMed ID: 25858064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulation of endogenous cardioblasts by exogenous cell therapy after myocardial infarction.
    Malliaras K; Ibrahim A; Tseliou E; Liu W; Sun B; Middleton RC; Seinfeld J; Wang L; Sharifi BG; Marbán E
    EMBO Mol Med; 2014 Jun; 6(6):760-77. PubMed ID: 24797668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cardiac stem cells for myocardial regeneration: promising but not ready for prime time.
    Lader J; Stachel M; Bu L
    Curr Opin Biotechnol; 2017 Oct; 47():30-35. PubMed ID: 28591641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.