These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Modeling amyloid beta and tau pathology in human cerebral organoids. Gonzalez C; Armijo E; Bravo-Alegria J; Becerra-Calixto A; Mays CE; Soto C Mol Psychiatry; 2018 Dec; 23(12):2363-2374. PubMed ID: 30171212 [TBL] [Abstract][Full Text] [Related]
4. A Large Panel of Isogenic APP and PSEN1 Mutant Human iPSC Neurons Reveals Shared Endosomal Abnormalities Mediated by APP β-CTFs, Not Aβ. Kwart D; Gregg A; Scheckel C; Murphy EA; Paquet D; Duffield M; Fak J; Olsen O; Darnell RB; Tessier-Lavigne M Neuron; 2019 Oct; 104(2):256-270.e5. PubMed ID: 31416668 [TBL] [Abstract][Full Text] [Related]
5. The familial Alzheimer's disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Muratore CR; Rice HC; Srikanth P; Callahan DG; Shin T; Benjamin LN; Walsh DM; Selkoe DJ; Young-Pearse TL Hum Mol Genet; 2014 Jul; 23(13):3523-36. PubMed ID: 24524897 [TBL] [Abstract][Full Text] [Related]
6. Modeling Alzheimer's Disease by Induced Pluripotent Stem Cells Carrying APP D678H Mutation. Chang KH; Lee-Chen GJ; Huang CC; Lin JL; Chen YJ; Wei PC; Lo YS; Yao CF; Kuo MW; Chen CM Mol Neurobiol; 2019 Jun; 56(6):3972-3983. PubMed ID: 30238389 [TBL] [Abstract][Full Text] [Related]
7. The Breakthroughs and Caveats of Using Human Pluripotent Stem Cells in Modeling Alzheimer's Disease. Sahlgren Bendtsen KM; Hall VJ Cells; 2023 Jan; 12(3):. PubMed ID: 36766763 [TBL] [Abstract][Full Text] [Related]
8. Modeling Alzheimer's Disease Using Human Brain Organoids. Karmirian K; Holubiec M; Goto-Silva L; Fernandez Bessone I; Vitória G; Mello B; Alloatti M; Vanderborght B; Falzone TL; Rehen S Methods Mol Biol; 2023; 2561():135-158. PubMed ID: 36399268 [TBL] [Abstract][Full Text] [Related]
9. Simple modeling of familial Alzheimer's disease using human pluripotent stem cell-derived cerebral organoid technology. Choe MS; Yeo HC; Kim JS; Lee J; Lee HJ; Kim HR; Baek KM; Jung NY; Choi M; Lee MY Stem Cell Res Ther; 2024 Apr; 15(1):118. PubMed ID: 38659053 [TBL] [Abstract][Full Text] [Related]
10. Human Pluripotent Stem Cell-Derived Neural Cells as a Relevant Platform for Drug Screening in Alzheimer's Disease. Garcia-Leon JA; Caceres-Palomo L; Sanchez-Mejias E; Mejias-Ortega M; Nuñez-Diaz C; Fernandez-Valenzuela JJ; Sanchez-Varo R; Davila JC; Vitorica J; Gutierrez A Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32962164 [TBL] [Abstract][Full Text] [Related]
11. Mouse induced pluripotent stem cells-derived Alzheimer's disease cerebral organoid culture and neural differentiation disorders. Fan W; Sun Y; Shi Z; Wang H; Deng J Neurosci Lett; 2019 Oct; 711():134433. PubMed ID: 31421155 [TBL] [Abstract][Full Text] [Related]
12. 3D bioengineered neural tissue generated from patient-derived iPSCs mimics time-dependent phenotypes and transcriptional features of Alzheimer's disease. Lomoio S; Pandey RS; Rouleau N; Menicacci B; Kim W; Cantley WL; Haydon PG; Bennett DA; Young-Pearse TL; Carter GW; Kaplan DL; Tesco G Mol Psychiatry; 2023 Dec; 28(12):5390-5401. PubMed ID: 37365240 [TBL] [Abstract][Full Text] [Related]
13. Modeling Neurodegenerative Microenvironment Using Cortical Organoids Derived from Human Stem Cells. Yan Y; Song L; Bejoy J; Zhao J; Kanekiyo T; Bu G; Zhou Y; Li Y Tissue Eng Part A; 2018 Jul; 24(13-14):1125-1137. PubMed ID: 29361890 [TBL] [Abstract][Full Text] [Related]
14. Early pathogenic event of Alzheimer's disease documented in iPSCs from patients with PSEN1 mutations. Yang J; Zhao H; Ma Y; Shi G; Song J; Tang Y; Li S; Li T; Liu N; Tang F; Gu J; Zhang L; Zhang Z; Zhang X; Jin Y; Le W Oncotarget; 2017 Jan; 8(5):7900-7913. PubMed ID: 27926491 [TBL] [Abstract][Full Text] [Related]
15. iPSCs-derived nerve-like cells from familial Alzheimer's disease PSEN 1 E280A reveal increased amyloid-beta levels and loss of the Y chromosome. Mendivil-Perez M; Velez-Pardo C; Kosik KS; Lopera F; Jimenez-Del-Rio M Neurosci Lett; 2019 Jun; 703():111-118. PubMed ID: 30904577 [TBL] [Abstract][Full Text] [Related]
16. Pushing the boundaries of brain organoids to study Alzheimer's disease. Cerneckis J; Bu G; Shi Y Trends Mol Med; 2023 Aug; 29(8):659-672. PubMed ID: 37353408 [TBL] [Abstract][Full Text] [Related]
17. Small-molecule induction of Aβ-42 peptide production in human cerebral organoids to model Alzheimer's disease associated phenotypes. Pavoni S; Jarray R; Nassor F; Guyot AC; Cottin S; Rontard J; Mikol J; Mabondzo A; Deslys JP; Yates F PLoS One; 2018; 13(12):e0209150. PubMed ID: 30557391 [TBL] [Abstract][Full Text] [Related]
18. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. Hossini AM; Megges M; Prigione A; Lichtner B; Toliat MR; Wruck W; Schröter F; Nuernberg P; Kroll H; Makrantonaki E; Zouboulis CC; Adjaye J BMC Genomics; 2015 Feb; 16(1):84. PubMed ID: 25765079 [TBL] [Abstract][Full Text] [Related]
19. Gamma secretase modulators and BACE inhibitors reduce Aβ production without altering gene expression in Alzheimer's disease iPSC-derived neurons and mice. Cusulin C; Wells I; Badillo S; Duran-Pacheco GC; Baumann K; Patsch C Mol Cell Neurosci; 2019 Oct; 100():103392. PubMed ID: 31381983 [TBL] [Abstract][Full Text] [Related]
20. 3D culture models of Alzheimer's disease: a road map to a "cure-in-a-dish". Choi SH; Kim YH; Quinti L; Tanzi RE; Kim DY Mol Neurodegener; 2016 Dec; 11(1):75. PubMed ID: 27938410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]