These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27622775)

  • 1. Heptagraphene: Tunable Dirac Cones in a Graphitic Structure.
    Lopez-Bezanilla A; Martin I; Littlewood PB
    Sci Rep; 2016 Sep; 6():33220. PubMed ID: 27622775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phagraphene: A Low-Energy Graphene Allotrope Composed of 5-6-7 Carbon Rings with Distorted Dirac Cones.
    Wang Z; Zhou XF; Zhang X; Zhu Q; Dong H; Zhao M; Oganov AR
    Nano Lett; 2015 Sep; 15(9):6182-6. PubMed ID: 26262429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dirac cones in a snub trihexagonal tiling lattice with reflective symmetry breaking.
    Yang B; Zhang X; Wang A; Zhao M
    J Phys Condens Matter; 2019 Apr; 31(15):155001. PubMed ID: 30677002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of covalent chemistry on the electronic structure and properties of carbon nanotubes and graphene.
    Bekyarova E; Sarkar S; Wang F; Itkis ME; Kalinina I; Tian X; Haddon RC
    Acc Chem Res; 2013 Jan; 46(1):65-76. PubMed ID: 23116475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition for graphene: graphynes with direction-dependent Dirac cones.
    Malko D; Neiss C; Viñes F; Görling A
    Phys Rev Lett; 2012 Feb; 108(8):086804. PubMed ID: 22463556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extreme sensitivity of the electric-field-induced band gap to the electronic topological transition in sliding bilayer graphene.
    Lee KW; Lee CE
    Sci Rep; 2015 Dec; 5():17490. PubMed ID: 26635178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing All Graphdiyne Materials as Graphene Derivatives: Topologically Driven Modulation of Electronic Properties.
    Serafini P; Milani A; Proserpio DM; Casari CS
    J Phys Chem C Nanomater Interfaces; 2021 Aug; 125(33):18456-18466. PubMed ID: 34476043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tight-binding studies of uniaxial strain in T-graphene nanoribbons.
    Hopkinson J; Hancock Y
    J Phys Condens Matter; 2022 Mar; 34(21):. PubMed ID: 35235914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying Dirac cones in carbon allotropes with square symmetry.
    Wang J; Huang H; Duan W; Liu Z
    J Chem Phys; 2013 Nov; 139(18):184701. PubMed ID: 24320285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dirac cones in the spectrum of bond-decorated graphenes.
    Van den Heuvel W; Soncini A
    J Chem Phys; 2014 Jun; 140(23):234114. PubMed ID: 24952530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unexpected buckled structures and tunable electronic properties in arsenic nanosheets: insights from first-principles calculations.
    Wang Y; Ding Y
    J Phys Condens Matter; 2015 Jun; 27(22):225304. PubMed ID: 25984912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-induced Dirac cone-like electronic structures and semiconductor-semimetal transition in graphdiyne.
    Cui HJ; Sheng XL; Yan QB; Zheng QR; Su G
    Phys Chem Chem Phys; 2013 Jun; 15(21):8179-85. PubMed ID: 23604005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opening a band gap without breaking lattice symmetry: a new route toward robust graphene-based nanoelectronics.
    Kou L; Hu F; Yan B; Frauenheim T; Chen C
    Nanoscale; 2014 Jul; 6(13):7474-9. PubMed ID: 24881864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semimetallic carbon honeycombs: new three-dimensional graphene allotropes with Dirac cones.
    Wang S; Wu D; Yang B; Ruckenstein E; Chen H
    Nanoscale; 2018 Feb; 10(6):2748-2754. PubMed ID: 29336453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Newly discovered graphyne allotrope with rare and robust Dirac node loop.
    Yan P; Ouyang T; He C; Li J; Zhang C; Tang C; Zhong J
    Nanoscale; 2021 Feb; 13(6):3564-3571. PubMed ID: 33522533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoelectronic doping of graphdiyne with boron and nitrogen: stable configurations and band gap modification.
    Bu H; Zhao M; Zhang H; Wang X; Xi Y; Wang Z
    J Phys Chem A; 2012 Apr; 116(15):3934-9. PubMed ID: 22435915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of Dirac Cones in SiC Silagraphene: A Combined Density Functional and Tight-Binding Study.
    Qin X; Liu Y; Li X; Xu J; Chi B; Zhai D; Zhao X
    J Phys Chem Lett; 2015 Apr; 6(8):1333-9. PubMed ID: 26263132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures and chemical properties of silicene: unlike graphene.
    Jose D; Datta A
    Acc Chem Res; 2014 Feb; 47(2):593-602. PubMed ID: 24215179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Azugraphene: a new graphene-like hexagonal carbon allotrope with Dirac cones.
    Liu J; Lu H
    RSC Adv; 2019 Oct; 9(59):34481-34485. PubMed ID: 35529997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.