BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2762299)

  • 1. Enzymes work by solvation substitution rather than by desolvation.
    Warshel A; Aqvist J; Creighton S
    Proc Natl Acad Sci U S A; 1989 Aug; 86(15):5820-4. PubMed ID: 2762299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculations of enzymatic reactions: calculations of pKa, proton transfer reactions, and general acid catalysis reactions in enzymes.
    Warshel A
    Biochemistry; 1981 May; 20(11):3167-77. PubMed ID: 7248277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of catalytic free energies in genetically modified proteins.
    Warshel A; Sussman F; Hwang JK
    J Mol Biol; 1988 May; 201(1):139-59. PubMed ID: 3047396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvation dynamics and energetics of intramolecular hydride transfer reactions in biomass conversion.
    Mushrif SH; Varghese JJ; Krishnamurthy CB
    Phys Chem Chem Phys; 2015 Feb; 17(7):4961-9. PubMed ID: 25591500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statins in therapy: understanding their hydrophilicity, lipophilicity, binding to 3-hydroxy-3-methylglutaryl-CoA reductase, ability to cross the blood brain barrier and metabolic stability based on electrostatic molecular orbital studies.
    Fong CW
    Eur J Med Chem; 2014 Oct; 85():661-74. PubMed ID: 25128668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics of enzyme catalysis.
    Warshel A
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5250-4. PubMed ID: 281676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative view of enzyme reactions.
    Dewar MJ; Storch DM
    Proc Natl Acad Sci U S A; 1985 Apr; 82(8):2225-9. PubMed ID: 3857576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Footprinting molecular electrostatic potential surfaces for calculation of solvation energies.
    Calero CS; Farwer J; Gardiner EJ; Hunter CA; Mackey M; Scuderi S; Thompson S; Vinter JG
    Phys Chem Chem Phys; 2013 Nov; 15(41):18262-73. PubMed ID: 24064723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of reactant positioning in enzyme catalysis: a hybrid quantum mechanics/molecular mechanics study of a haloalkane dehalogenase.
    Lau EY; Kahn K; Bash PA; Bruice TC
    Proc Natl Acad Sci U S A; 2000 Aug; 97(18):9937-42. PubMed ID: 10963662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process.
    Ishida T; Kato S
    J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration.
    Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U
    J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of ion permeation through membrane channels. Solvation of Na+ by gramicidin A.
    Aqvist J; Warshel A
    Biophys J; 1989 Jul; 56(1):171-82. PubMed ID: 2473789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalysis by solvation rather than the desolvation effect: exploring the catalytic efficiency of SAM-dependent chlorinase.
    Araújo E; Lima AH; Lameira J
    Phys Chem Chem Phys; 2017 Aug; 19(32):21350-21356. PubMed ID: 28762403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulations of enzyme catalysis: finding out what has been optimized by evolution.
    Warshel A; Florián J
    Proc Natl Acad Sci U S A; 1998 May; 95(11):5950-5. PubMed ID: 9600897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free energy determinants of secondary structure formation: I. alpha-Helices.
    Yang AS; Honig B
    J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinetics of the combination reaction between enzyme and substrate.
    Kuo-Chen C
    Sci Sin; 1976; 19(4):505-28. PubMed ID: 824728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple model for solvation in mixed solvents. Applications to the stabilization and destabilization of macromolecular structures.
    Schellman JA
    Biophys Chem; 1990 Aug; 37(1-3):121-40. PubMed ID: 2285775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical studies on the hydrolysis of mono-phosphate and tri-phosphate in gas phase and aqueous solution.
    Wang YN; Topol IA; Collins JR; Burt SK
    J Am Chem Soc; 2003 Oct; 125(43):13265-73. PubMed ID: 14570503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis.
    Gilson MK; Honig B
    Proteins; 1988; 4(1):7-18. PubMed ID: 3186692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.