These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2762299)

  • 41. Protein-Ligand Electrostatic Binding Free Energies from Explicit and Implicit Solvation.
    Izadi S; Aguilar B; Onufriev AV
    J Chem Theory Comput; 2015 Sep; 11(9):4450-9. PubMed ID: 26575935
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermodynamic and extrathermodynamic requirements of enzyme catalysis.
    Wolfenden R
    Biophys Chem; 2003 Sep; 105(2-3):559-72. PubMed ID: 14499918
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effective activation energy of enzymatic and nonenzymatic reactions. Evolution-imposed requirements to enzyme structure.
    Krishtalik LI
    J Theor Biol; 1985 Jan; 112(2):251-64. PubMed ID: 3982043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interplay of self-association and solvation in polar liquids.
    Amenta V; Cook JL; Hunter CA; Low CM; Sun H; Vinter JG
    J Am Chem Soc; 2013 Aug; 135(32):12091-100. PubMed ID: 23915003
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single-ion solvation free energies and the normal hydrogen electrode potential in methanol, acetonitrile, and dimethyl sulfoxide.
    Kelly CP; Cramer CJ; Truhlar DG
    J Phys Chem B; 2007 Jan; 111(2):408-22. PubMed ID: 17214493
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combined QM/MM study of the mechanism and kinetic isotope effect of the nucleophilic substitution reaction in haloalkane dehalogenase.
    Devi-Kesavan LS; Gao J
    J Am Chem Soc; 2003 Feb; 125(6):1532-40. PubMed ID: 12568613
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanism of thioredoxin-catalyzed disulfide reduction. Activation of the buried thiol and role of the variable active-site residues.
    Carvalho AT; Swart M; van Stralen JN; Fernandes PA; Ramos MJ; Bickelhaupt FM
    J Phys Chem B; 2008 Feb; 112(8):2511-23. PubMed ID: 18237164
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A VB/MM view of the identity S(N)2 valence-bond state correlation diagram in aqueous solution.
    Sharir-Ivry A; Shurki A
    J Phys Chem A; 2008 Dec; 112(50):13157-63. PubMed ID: 18620378
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nucleophilic attack on phosphate diesters: a density functional study of in-line reactivity in dianionic, monoanionic, and neutral systems.
    Lopez X; Dejaegere A; Leclerc F; York DM; Karplus M
    J Phys Chem B; 2006 Jun; 110(23):11525-39. PubMed ID: 16771429
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intramolecular interactions, enzyme activity and models.
    Lipscomb WN
    Ciba Found Symp; 1977; (60):1-22. PubMed ID: 252449
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of protein dynamics in reaction rate enhancement by enzymes.
    Agarwal PK
    J Am Chem Soc; 2005 Nov; 127(43):15248-56. PubMed ID: 16248667
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Theoretical studies on the thermodynamics and kinetics of the N-glycosidic bond cleavage in deoxythymidine glycol.
    Chen ZQ; Zhang CH; Xue Y
    J Phys Chem B; 2009 Jul; 113(30):10409-20. PubMed ID: 19719287
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Low-barrier hydrogen bonds and enzymatic catalysis.
    Cleland WW
    Arch Biochem Biophys; 2000 Oct; 382(1):1-5. PubMed ID: 11051090
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computational method for relative binding energies of enzyme-substrate complexes.
    Zhang T; Koshland DE
    Protein Sci; 1996 Feb; 5(2):348-56. PubMed ID: 8745413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of solvent effects for the Claisen rearrangement of chorismate to prephenate: mechanistic interpretation via near attack conformations.
    Repasky MP; Guimarães CR; Chandrasekhar J; Tirado-Rives J; Jorgensen WL
    J Am Chem Soc; 2003 Jun; 125(22):6663-72. PubMed ID: 12769575
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conformational dynamics of protein side chains and enzyme-substrate interaction.
    Sitnitsky AE
    J Biomol Struct Dyn; 1994 Oct; 12(2):475-86. PubMed ID: 7702781
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Contributions of water transfer energy to protein-ligand association and dissociation barriers: Watermap analysis of a series of p38α MAP kinase inhibitors.
    Pearlstein RA; Sherman W; Abel R
    Proteins; 2013 Sep; 81(9):1509-26. PubMed ID: 23468227
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A definitive mechanism for chorismate mutase.
    Zhang X; Zhang X; Bruice TC
    Biochemistry; 2005 Aug; 44(31):10443-8. PubMed ID: 16060652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.