These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 27623002)

  • 1. MicroRNAs and ectodermal specification I. Identification of miRs and miR-targeted mRNAs in early anterior neural and epidermal ectoderm.
    Shah VV; Soibam B; Ritter RA; Benham A; Oomen J; Sater AK
    Dev Biol; 2017 Jun; 426(2):200-210. PubMed ID: 27623002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data on microRNAs and microRNA-targeted mRNAs in
    Shah VV; Soibam B; Ritter RA; Benham A; Oomen J; Sater AK
    Data Brief; 2016 Dec; 9():699-703. PubMed ID: 27812534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates.
    Marchak A; Grant PA; Neilson KM; Datta Majumdar H; Yaklichkin S; Johnson D; Moody SA
    Dev Biol; 2017 Sep; 429(1):213-224. PubMed ID: 28663133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of microRNAs and microRNA targets in Xenopus gastrulae: The role of miR-26 in the regulation of Smad1.
    Liu C; Lou CH; Shah V; Ritter R; Talley J; Soibam B; Benham A; Zhu H; Perez E; Shieh YE; Gunaratne PH; Sater AK
    Dev Biol; 2016 Jan; 409(1):26-38. PubMed ID: 26548531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction.
    Takebayashi-Suzuki K; Arita N; Murasaki E; Suzuki A
    Mech Dev; 2007; 124(11-12):840-55. PubMed ID: 17950579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt, and FGF signaling.
    Watanabe T; Kanai Y; Matsukawa S; Michiue T
    Genesis; 2015 Oct; 53(10):652-9. PubMed ID: 26249012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. microRNAs associated with early neural crest development in Xenopus laevis.
    Ward NJ; Green D; Higgins J; Dalmay T; Münsterberg A; Moxon S; Wheeler GN
    BMC Genomics; 2018 Jan; 19(1):59. PubMed ID: 29347911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of MAP kinase by the BMP-4/TAK1 pathway in Xenopus ectoderm.
    Goswami M; Uzgare AR; Sater AK
    Dev Biol; 2001 Aug; 236(2):259-70. PubMed ID: 11476570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of Xgsk-3 disrupts anterior ectodermal patterning in Xenopus.
    Pierce SB; Kimelman D
    Dev Biol; 1996 May; 175(2):256-64. PubMed ID: 8626031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives.
    Rogers CD; Harafuji N; Archer T; Cunningham DD; Casey ES
    Mech Dev; 2009; 126(1-2):42-55. PubMed ID: 18992330
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Watanabe T; Yamamoto T; Tsukano K; Hirano S; Horikawa A; Michiue T
    Development; 2018 Oct; 145(20):. PubMed ID: 30291163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cdc2-like kinase 2 (Clk2) promotes early neural development in Xenopus embryos.
    Virgirinia RP; Jahan N; Okada M; Takebayashi-Suzuki K; Yoshida H; Nakamura M; Akao H; Yoshimoto Y; Fatchiyah F; Ueno N; Suzuki A
    Dev Growth Differ; 2019 Aug; 61(6):365-377. PubMed ID: 31270814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin and segregation of cranial placodes in Xenopus laevis.
    Pieper M; Eagleson GW; Wosniok W; Schlosser G
    Dev Biol; 2011 Dec; 360(2):257-75. PubMed ID: 21989028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xnr3 affects brain patterning via cell migration in the neural-epidermal tissue boundary during early Xenopus embryogenesis.
    Morita M; Yamashita S; Matsukawa S; Haramoto Y; Takahashi S; Asashima M; Michiue T
    Int J Dev Biol; 2013; 57(9-10):779-86. PubMed ID: 24307296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory targets for transcription factor AP2 in Xenopus embryos.
    Luo T; Zhang Y; Khadka D; Rangarajan J; Cho KW; Sargent TD
    Dev Growth Differ; 2005 Aug; 47(6):403-13. PubMed ID: 16109038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miR-199 plays both positive and negative regulatory roles in Xenopus eye development.
    Ritter RA; Ulrich CH; Brzezinska BN; Shah VV; Zamora MJ; Kelly LE; El-Hodiri HM; Sater AK
    Genesis; 2020 Mar; 58(3-4):e23354. PubMed ID: 31909537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway.
    Takahashi C; Suzuki T; Nishida E; Kusakabe M
    Int J Dev Biol; 2012; 56(5):393-402. PubMed ID: 22811273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An essential role of Xenopus Foxi1a for ventral specification of the cephalic ectoderm during gastrulation.
    Matsuo-Takasaki M; Matsumura M; Sasai Y
    Development; 2005 Sep; 132(17):3885-94. PubMed ID: 16079156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis.
    Maharana SK; Schlosser G
    BMC Biol; 2018 Jul; 16(1):79. PubMed ID: 30012125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AP2γ regulates neural and epidermal development downstream of the BMP pathway at early stages of ectodermal patterning.
    Qiao Y; Zhu Y; Sheng N; Chen J; Tao R; Zhu Q; Zhang T; Qian C; Jing N
    Cell Res; 2012 Nov; 22(11):1546-61. PubMed ID: 22945355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.