BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27623007)

  • 1. Detecting Cooperativity between Transcription Factors Based on Functional Coherence and Similarity of Their Target Gene Sets.
    Wu WS; Lai FJ
    PLoS One; 2016; 11(9):e0162931. PubMed ID: 27623007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast.
    Wu WS; Lai FJ
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S10. PubMed ID: 26679776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive performance evaluation on the prediction results of existing cooperative transcription factors identification algorithms.
    Lai FJ; Chang HT; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 4(Suppl 4):S9. PubMed ID: 25521604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. YCRD: Yeast Combinatorial Regulation Database.
    Wu WS; Hsieh YC; Lai FJ
    PLoS One; 2016; 11(7):e0159213. PubMed ID: 27392072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CoopTFD: a repository for predicted yeast cooperative transcription factor pairs.
    Wu WS; Lai FJ; Tu BW; Chang DT
    Database (Oxford); 2016; 2016():. PubMed ID: 27242036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PCTFPeval: a web tool for benchmarking newly developed algorithms for predicting cooperative transcription factor pairs in yeast.
    Lai FJ; Chang HT; Wu WS
    BMC Bioinformatics; 2015; 16 Suppl 18(Suppl 18):S2. PubMed ID: 26677932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying cooperativity among transcription factors controlling the cell cycle in yeast.
    Banerjee N; Zhang MQ
    Nucleic Acids Res; 2003 Dec; 31(23):7024-31. PubMed ID: 14627835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A regulatory similarity measure using the location information of transcription factor binding sites in Saccharomyces cerevisiae.
    Wu WS; Wei ML; Yeh CM; Chang DT
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S9. PubMed ID: 25560196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping functional transcription factor networks from gene expression data.
    Haynes BC; Maier EJ; Kramer MH; Wang PI; Brown H; Brent MR
    Genome Res; 2013 Aug; 23(8):1319-28. PubMed ID: 23636944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription factor regulatory modules provide the molecular mechanisms for functional redundancy observed among transcription factors in yeast.
    Yang TH
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):630. PubMed ID: 31881824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast cell cycle transcription factors identification by variable selection criteria.
    Wang H; Wang YH; Wu WS
    Gene; 2011 Oct; 485(2):172-6. PubMed ID: 21703335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo motif discovery facilitates identification of interactions between transcription factors in Saccharomyces cerevisiae.
    Chen MJ; Chou LC; Hsieh TT; Lee DD; Liu KW; Yu CY; Oyang YJ; Tsai HK; Chen CY
    Bioinformatics; 2012 Mar; 28(5):701-8. PubMed ID: 22238267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae.
    Mojzita D; Hohmann S
    Mol Genet Genomics; 2006 Aug; 276(2):147-61. PubMed ID: 16850348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of the cis-regulatory modules of divergent gene pairs in yeast.
    Su CH; Shih CH; Chang TH; Tsai HK
    Genomics; 2010 Dec; 96(6):352-61. PubMed ID: 20826206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inference of combinatorial regulation in yeast transcriptional networks: a case study of sporulation.
    Wang W; Cherry JM; Nochomovitz Y; Jolly E; Botstein D; Li H
    Proc Natl Acad Sci U S A; 2005 Feb; 102(6):1998-2003. PubMed ID: 15684073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive models of eukaryotic transcriptional regulation reveals changes in transcription factor roles and promoter usage between metabolic conditions.
    Holland P; Bergenholm D; Börlin CS; Liu G; Nielsen J
    Nucleic Acids Res; 2019 Jun; 47(10):4986-5000. PubMed ID: 30976803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of transcription factor cooperativity via stochastic system model.
    Chang YH; Wang YC; Chen BS
    Bioinformatics; 2006 Sep; 22(18):2276-82. PubMed ID: 16844711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide prediction and characterization of interactions between transcription factors in Saccharomyces cerevisiae.
    Yu X; Lin J; Masuda T; Esumi N; Zack DJ; Qian J
    Nucleic Acids Res; 2006; 34(3):917-27. PubMed ID: 16464824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.