These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 27623522)

  • 1. Free and forced vibrations of SC-cut quartz crystal rectangular plates with the first-order Mindlin plate equations.
    Wu R; Wang W; Chen G; Chen H; Ma T; Du J; Wang J
    Ultrasonics; 2017 Jan; 73():96-106. PubMed ID: 27623522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forced vibrations of SC-cut quartz crystal rectangular plates with partial electrodes by the Lee plate equations.
    Wu R; Wang W; Chen G; Du J; Ma T; Wang J
    Ultrasonics; 2016 Feb; 65():338-44. PubMed ID: 26433435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of thickness-shear vibrations of doubly-rotated quartz crystal plates with the corrected first-order Mindlin plate equations.
    Du J; Wang W; Chen G; Wu R; Huang D; Ma T; Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2371-80. PubMed ID: 24158292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the accuracy of Mindlin plate predictions for the frequency-temperature behavior of resonant modes in AT- and SC-cut quartz plates.
    Yong YK; Wang J; Imai T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):1-13. PubMed ID: 18238393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analysis of nonlinear vibrations of coupled thickness-shear and flexural modes of quartz crystal plates with the homotopy analysis method.
    Wu R; Wang J; Du J; Huang D; Yan W; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):30-9. PubMed ID: 22293733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction factors of the Mindlin plate equations with the consideration of electrodes.
    Du J; Chen G; Wang W; Wu R; Ma T; Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2352-8. PubMed ID: 23143585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fifth-order overtone vibrations of quartz crystal plates with corrected higher-order Mindlin plate equations.
    Wang J; Wu R; Yang L; Du J; Ma T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2278-91. PubMed ID: 23143577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.
    Wang J; Yang L; Pan Q; Chao MC; Du J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1102-7. PubMed ID: 21622066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The determination of the optimal length of crystal blanks in quartz crystal resonators.
    Wang J; Zhao W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):2023-30. PubMed ID: 16422414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The calculation of electrical parameters of AT-cut quartz crystal resonators with the consideration of material viscosity.
    Wang J; Zhao W; Du J; Hu Y
    Ultrasonics; 2011 Jan; 51(1):65-70. PubMed ID: 20594568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of a liquid layer on thickness-shear vibrations of rectangular AT-cut quartz plates.
    Lee PC; Huang R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):604-11. PubMed ID: 12046936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overtone frequency spectra for x3-dependent modes in AT-cut quartz resonators.
    Zhu J; Chen W; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):858-63. PubMed ID: 23549548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The determination of electrical parameters of quartz crystal resonators with the consideration of dissipation.
    Wang J; Zhao W; Du J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e869-73. PubMed ID: 16843512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The frequency-temperature analysis equations of piezoelectric plates with Lee plate theory.
    Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):1042-6. PubMed ID: 18238510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonances and energy trapping in AT-cut quartz resonators operating with fast shear modes driven by lateral electric fields produced by surface electrodes.
    Ma T; Wang J; Du J; Yang J
    Ultrasonics; 2015 May; 59():14-20. PubMed ID: 25660411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of air resistance on AT-cut quartz thickness-shear resonators.
    Chen Y; Wang J; Du J; Zhang W; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):402-7. PubMed ID: 23357914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling Vibration Analysis of Trapped-Energy Rectangular Quartz Resonators by Variational Formulation of Mindlin's Theory.
    Li N; Wang B; Qian Z
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29587469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Five-mode frequency spectra of x3-dependent modes in AT-cut quartz resonators.
    Chen G; Wu R; Wang J; Du J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):811-6. PubMed ID: 22547292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical Solutions Based on Fourier Cosine Series for the Free Vibrations of Functionally Graded Material Rectangular Mindlin Plates.
    Huang CS; Huang SH
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency spectra of AT-cut quartz plates with electrodes of unequal thickness.
    Wang J; Hu Y; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1146-51. PubMed ID: 20442025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.