These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
569 related articles for article (PubMed ID: 27623806)
1. Performance-based robotic assistance during rhythmic arm exercises. Leconte P; Ronsse R J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806 [TBL] [Abstract][Full Text] [Related]
2. Rhythmic robotic training enhances motor skills of both rhythmic and discrete upper-limb movements after stroke: a longitudinal pilot study. Leconte P; Stoquart G; Lejeune T; Ronsse R Int J Rehabil Res; 2019 Mar; 42(1):46-55. PubMed ID: 30371552 [TBL] [Abstract][Full Text] [Related]
3. Does assist-as-needed upper limb robotic therapy promote participation in repetitive activity-based motor training in sub-acute stroke patients with severe paresis? Grosmaire AG; Duret C NeuroRehabilitation; 2017; 41(1):31-39. PubMed ID: 28527224 [TBL] [Abstract][Full Text] [Related]
4. Comparison of exercise training effect with different robotic devices for upper limb rehabilitation: a retrospective study. Colombo R; Pisano F; Delconte C; Mazzone A; Grioni G; Castagna M; Bazzini G; Imarisio C; Maggioni G; Pistarini C Eur J Phys Rehabil Med; 2017 Apr; 53(2):240-248. PubMed ID: 27676203 [TBL] [Abstract][Full Text] [Related]
5. Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke. Pila O; Duret C; Laborne FX; Gracies JM; Bayle N; Hutin E J Neuroeng Rehabil; 2017 Oct; 14(1):105. PubMed ID: 29029633 [TBL] [Abstract][Full Text] [Related]
6. Rhythmic arm movements are less affected than discrete ones after a stroke. Leconte P; Orban de Xivry JJ; Stoquart G; Lejeune T; Ronsse R Exp Brain Res; 2016 Jun; 234(6):1403-17. PubMed ID: 26749181 [TBL] [Abstract][Full Text] [Related]
7. Exerciser for rehabilitation of the Arm (ERA): Development and unique features of a 3D end-effector robot. Milot MH; Hamel M; Provost PO; Bernier-Ouellet J; Dupuis M; Letourneau D; Briere S; Michaud F Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5833-5836. PubMed ID: 28269581 [TBL] [Abstract][Full Text] [Related]
8. Robotic Assistance for Training Finger Movement Using a Hebbian Model: A Randomized Controlled Trial. Rowe JB; Chan V; Ingemanson ML; Cramer SC; Wolbrecht ET; Reinkensmeyer DJ Neurorehabil Neural Repair; 2017 Aug; 31(8):769-780. PubMed ID: 28803535 [TBL] [Abstract][Full Text] [Related]
9. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices. Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397 [TBL] [Abstract][Full Text] [Related]
10. Mapping upper-limb motor performance after stroke - a novel method with utility for individualized motor training. Rosenthal O; Wing AM; Wyatt JL; Punt D; Miall RC J Neuroeng Rehabil; 2017 Dec; 14(1):127. PubMed ID: 29208020 [TBL] [Abstract][Full Text] [Related]
11. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke. Lewis GN; Perreault EJ IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):595-604. PubMed ID: 19666342 [TBL] [Abstract][Full Text] [Related]
12. Effector force requirements to enable robotic systems to provide assisted exercise in people with upper limb impairment after stroke. Jackson AE; Culmer PR; Levesley MC; Cozens JA; Makower SG; Bhakta BB IEEE Int Conf Rehabil Robot; 2011; 2011():5975391. PubMed ID: 22275595 [TBL] [Abstract][Full Text] [Related]
13. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study. Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Dimbwadyo I; Carrasco L; Alves S; Gonzalez-Alted C; Gomez-Blanco A; Pons JL J Neuroeng Rehabil; 2017 Oct; 14(1):104. PubMed ID: 29025427 [TBL] [Abstract][Full Text] [Related]
14. Robotic-assisted rehabilitation of the upper limb after acute stroke. Masiero S; Celia A; Rosati G; Armani M Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510 [TBL] [Abstract][Full Text] [Related]
15. Robot-Assisted Reach Training for Improving Upper Extremity Function of Chronic Stroke. Cho KH; Song WK Tohoku J Exp Med; 2015 Oct; 237(2):149-55. PubMed ID: 26460793 [TBL] [Abstract][Full Text] [Related]
16. Slow Versus Fast Robot-Assisted Locomotor Training After Severe Stroke: A Randomized Controlled Trial. Rodrigues TA; Goroso DG; Westgate PM; Carrico C; Batistella LR; Sawaki L Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S165-S170. PubMed ID: 28796648 [TBL] [Abstract][Full Text] [Related]
17. Boosting robot-assisted rehabilitation of stroke hemiparesis by individualized selection of upper limb movements - a pilot study. Rosenthal O; Wing AM; Wyatt JL; Punt D; Brownless B; Ko-Ko C; Miall RC J Neuroeng Rehabil; 2019 Mar; 16(1):42. PubMed ID: 30894192 [TBL] [Abstract][Full Text] [Related]
18. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation. Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406 [TBL] [Abstract][Full Text] [Related]
19. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities. Li C; Rusák Z; Horváth I; Ji L Int J Rehabil Res; 2014 Dec; 37(4):334-42. PubMed ID: 25221845 [TBL] [Abstract][Full Text] [Related]
20. Mitigating Trunk Compensatory Movements in Post-Stroke Survivors through Visual Feedback during Robotic-Assisted Arm Reaching Exercises. Lee SH; Song WK Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]