These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 27623816)

  • 21. Control of protozoa contamination and lipid accumulation in Neochloris oleoabundans culture: Effects of pH and dissolved inorganic carbon.
    Peng L; Lan CQ; Zhang Z; Sarch C; Laporte M
    Bioresour Technol; 2015 Dec; 197():143-51. PubMed ID: 26320019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving carbohydrate production of Chlorella sorokiniana NIES-2168 through semi-continuous process coupled with mixotrophic cultivation.
    Wang Y; Chiu SY; Ho SH; Liu Z; Hasunuma T; Chang TT; Chang KF; Chang JS; Ren NQ; Kondo A
    Biotechnol J; 2016 Aug; 11(8):1072-81. PubMed ID: 27312599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological hydrogen production by the algal biomass Chlorella vulgaris MSU 01 strain isolated from pond sediment.
    Bala Amutha K; Murugesan AG
    Bioresour Technol; 2011 Jan; 102(1):194-9. PubMed ID: 20620045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of medium composition and fermentation parameters on pullulan production by Aureobasidium pullulans.
    Cheng KC; Demirci A; Catchmark JM
    Food Sci Technol Int; 2011 Apr; 17(2):99-109. PubMed ID: 21421674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomass recycling from a riboflavin cultivation with B. subtilis: lysis, extract production and testing as substrate in riboflavin cultivation.
    Bretz K; Ilijevic S; Grüneberg M; Becker U; Syldatk C
    Biotechnol Bioeng; 2006 Dec; 95(6):1023-31. PubMed ID: 16732593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris].
    Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of promising algal strains for sustainable exploitation coupled with CO2 fixation.
    Singh SK; Rahman A; Dixit K; Nath A; Sundaram S
    Environ Technol; 2016; 37(5):613-22. PubMed ID: 26215134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simple processes for optimized growth and harvest of Ettlia sp. by pH control using CO2 and light irradiation.
    Yoo C; La HJ; Kim SC; Oh HM
    Biotechnol Bioeng; 2015 Feb; 112(2):288-96. PubMed ID: 25182602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An effective and simplified fed-batch strategy for improved 2,3-butanediol production by Klebsiella oxytoca.
    Nie ZK; Ji XJ; Huang H; Du J; Li ZY; Qu L; Zhang Q; Ouyang PK
    Appl Biochem Biotechnol; 2011 Apr; 163(8):946-53. PubMed ID: 20938754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Factors affecting antimicrobial activity of Synechococcus leopoliensis.
    Noaman NH; Fattah A; Khaleafa M; Zaky SH
    Microbiol Res; 2004; 159(4):395-402. PubMed ID: 15646385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels.
    Markou G; Angelidaki I; Georgakakis D
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):631-45. PubMed ID: 22996277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large-scale bioreactor production of the herbicide-degrading Aminobacter sp. strain MSH1.
    Schultz-Jensen N; Knudsen BE; Frkova Z; Aamand J; Johansen T; Thykaer J; Sørensen SR
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2335-44. PubMed ID: 24562459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth and recombinant protein expression with Escherichia coli in different batch cultivation media.
    Hortsch R; Weuster-Botz D
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):69-76. PubMed ID: 21181153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions between organic and inorganic carbon sources during mixotrophic cultivation of Synechococcus sp.
    Kang R; Wang J; Shi D; Cong W; Cai Z; Ouyang F
    Biotechnol Lett; 2004 Sep; 26(18):1429-32. PubMed ID: 15604776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-cost production of green microalga Botryococcus braunii biomass with high lipid content through mixotrophic and photoautotrophic cultivation.
    Yeesang C; Cheirsilp B
    Appl Biochem Biotechnol; 2014 Sep; 174(1):116-29. PubMed ID: 24989454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoautotrophic nutrient utilization and limitation during semi-continuous growth of Synechocystis sp. PCC6803.
    Kim HW; Vannela R; Zhou C; Harto C; Rittmann BE
    Biotechnol Bioeng; 2010 Jul; 106(4):553-63. PubMed ID: 20340142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of media composition and growth conditions on production of beta-glucosidase by Aspergillus niger C-6.
    García-Kirchner O; Segura-Granados M; Rodríguez-Pascual P
    Appl Biochem Biotechnol; 2005; 121-124():347-59. PubMed ID: 15917612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic modeling of plasmid bioproduction in Escherichia coli DH5α cultures over different carbon-source compositions.
    Lopes MB; Martins G; Calado CR
    J Biotechnol; 2014 Sep; 186():38-48. PubMed ID: 24998768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Physiological aspects of intensifying yeast growth].
    Shkidchenko AN
    Prikl Biokhim Mikrobiol; 2006; 42(2):213-8. PubMed ID: 16761577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.