These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27624301)

  • 1. Understanding the pseudocapacitance of RuO2 from joint density functional theory.
    Zhan C; Jiang DE
    J Phys Condens Matter; 2016 Nov; 28(46):464004. PubMed ID: 27624301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the MXene Pseudocapacitance.
    Zhan C; Naguib M; Lukatskaya M; Kent PRC; Gogotsi Y; Jiang DE
    J Phys Chem Lett; 2018 Mar; 9(6):1223-1228. PubMed ID: 29461062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Insights into Materials and Interfaces for Capacitive Energy Storage.
    Zhan C; Lian C; Zhang Y; Thompson MW; Xie Y; Wu J; Kent PRC; Cummings PT; Jiang DE; Wesolowski DJ
    Adv Sci (Weinh); 2017 Jul; 4(7):1700059. PubMed ID: 28725531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations.
    Ozoliņš V; Zhou F; Asta M
    Acc Chem Res; 2013 May; 46(5):1084-93. PubMed ID: 23560700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Do Pseudocapacitors Store Energy? Theoretical Analysis and Experimental Illustration.
    Costentin C; Porter TR; Savéant JM
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8649-8658. PubMed ID: 28195702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy storage: pseudocapacitance in prospect.
    Costentin C; Savéant JM
    Chem Sci; 2019 Jun; 10(22):5656-5666. PubMed ID: 31293750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the electrochemical capacitance of MXene nanosheets for high-performance pseudocapacitors.
    Ji X; Xu K; Chen C; Zhang B; Ruan Y; Liu J; Miao L; Jiang J
    Phys Chem Chem Phys; 2016 Feb; 18(6):4460-7. PubMed ID: 26790481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molybdenum Nitride Nanocrystals Anchored on Phosphorus-Incorporated Carbon Fabric as a Negative Electrode for High-Performance Asymmetric Pseudocapacitor.
    Dubal DP; Abdel-Azeim S; Chodankar NR; Han YK
    iScience; 2019 Jun; 16():50-62. PubMed ID: 31153041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance.
    Ling T; Da P; Zheng X; Ge B; Hu Z; Wu M; Du XW; Hu WB; Jaroniec M; Qiao SZ
    Sci Adv; 2018 Oct; 4(10):eaau6261. PubMed ID: 30345366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced electrochemical performance of hydrous RuO2/mesoporous carbon nanocomposites via nitrogen doping.
    Zhang C; Xie Y; Zhao M; Pentecost AE; Ling Z; Wang J; Long D; Ling L; Qiao W
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9751-9. PubMed ID: 24847730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation into Pseudo-Capacitance Behavior of Glycoside-Containing Hydrogels.
    Raravikar N; Dobos A; Narayanan E; Grandhi TS; Mishra S; Rege K; Goryll M
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3554-3561. PubMed ID: 28067487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of terminations and coordination atoms on the pseudocapacitance of titanium carbonitride monolayers.
    Zhang W; Cheng C; Fang P; Tang B; Zhang J; Huang G; Cong X; Zhang B; Ji X; Miao L
    Phys Chem Chem Phys; 2016 Feb; 18(6):4376-84. PubMed ID: 26792560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance.
    Augustyn V; Come J; Lowe MA; Kim JW; Taberna PL; Tolbert SH; Abruña HD; Simon P; Dunn B
    Nat Mater; 2013 Jun; 12(6):518-22. PubMed ID: 23584143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demystifying the Stern layer at a metal-electrolyte interface: Local dielectric constant, specific ion adsorption, and partial charge transfer.
    Wang X; Liu K; Wu J
    J Chem Phys; 2021 Mar; 154(12):124701. PubMed ID: 33810643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials.
    Kim SK; Kim YK; Lee H; Lee SB; Park HS
    ChemSusChem; 2014 Apr; 7(4):1094-101. PubMed ID: 24678040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SrFeO
    Gupta A; Kushwaha V; Mondal R; Singh AN; Prakash R; Mandal KD; Singh P
    Phys Chem Chem Phys; 2022 May; 24(18):11066-11078. PubMed ID: 35471404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Ion-Sorption Dynamics in Functionalized Porous Carbons for Enhanced Capacitive Energy Storage.
    Su H; Huang H; Zhao S; Zhou Y; Xu S; Pan H; Gu B; Chu X; Deng W; Zhang H; Zhang H; Chen J; Yang W
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2773-2782. PubMed ID: 31867944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the Dimensions of 2D MXenes for Ultrahigh-Rate Pseudocapacitive Energy Storage.
    Kayali E; VahidMohammadi A; Orangi J; Beidaghi M
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):25949-25954. PubMed ID: 30044609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.