These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27624554)

  • 1. Improving Sensitivity and Reproducibility of SERS Sensing in Microenvironments Using Individual, Optically Trapped Surface-Enhanced Raman Spectroscopy(SERS) Probes.
    Strobbia P; Mayer A; Cullum BM
    Appl Spectrosc; 2017 Feb; 71(2):279-287. PubMed ID: 27624554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman spectroscopy of optical-trapped single particle using bull's eye nanostructure.
    Ma J; Ning X; Lou Y; Wu D; Min Q; Wang Y; Zhang Q; Pang Y
    Opt Lett; 2023 Mar; 48(5):1204-1207. PubMed ID: 36857249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of biotic and abiotic particles by using a combination of optical tweezers and in situ Raman spectroscopy.
    Gessner R; Winter C; Rösch P; Schmitt M; Petry R; Kiefer W; Lankers M; Popp J
    Chemphyschem; 2004 Aug; 5(8):1159-70. PubMed ID: 15446738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ surface-enhanced Raman scattering sensing with soft and flexible polymer optical fiber probes.
    Guo J; Luo Y; Yang C; Kong L
    Opt Lett; 2018 Nov; 43(21):5443-5446. PubMed ID: 30383028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles.
    Kong L; Lee C; Earhart CM; Cordovez B; Chan JW
    Opt Express; 2015 Mar; 23(5):6793-802. PubMed ID: 25836898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
    Zaleski S; Wilson AJ; Mattei M; Chen X; Goubert G; Cardinal MF; Willets KA; Van Duyne RP
    Acc Chem Res; 2016 Sep; 49(9):2023-30. PubMed ID: 27602428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical fibre-tip probes for SERS: numerical study for design considerations.
    Hutter T; Elliott SR; Mahajan S
    Opt Express; 2018 Jun; 26(12):15539-15550. PubMed ID: 30114813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autoenhanced Raman Spectroscopy via Plasmonic Trapping for Molecular Sensing.
    Hong S; Shim O; Kwon H; Choi Y
    Anal Chem; 2016 Aug; 88(15):7633-8. PubMed ID: 27396542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SERS Enhancement on the Basis of Temperature-Dependent Chemisorption: Microcalorimetric Evidence.
    Roy CN; Ghosh D; Mondal S; Kundu S; Maiti S; Saha A
    Chemphyschem; 2016 Dec; 17(24):4144-4148. PubMed ID: 27723947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytically Powered Matchlike Nanomotor for Light-Guided Active SERS Sensing.
    Wang Y; Zhou C; Wang W; Xu D; Zeng F; Zhan C; Gu J; Li M; Zhao W; Zhang J; Guo J; Feng H; Ma X
    Angew Chem Int Ed Engl; 2018 Oct; 57(40):13110-13113. PubMed ID: 30129694
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    D'Acunto M
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31086033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced Raman spectroscopy (SERS): progress and trends.
    Cialla D; März A; Böhme R; Theil F; Weber K; Schmitt M; Popp J
    Anal Bioanal Chem; 2012 Apr; 403(1):27-54. PubMed ID: 22205182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Portable fiber sensors based on surface-enhanced Raman scattering.
    Yang X; Tanaka Z; Newhouse R; Xu Q; Chen B; Chen S; Zhang JZ; Gu C
    Rev Sci Instrum; 2010 Dec; 81(12):123103. PubMed ID: 21198010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging.
    Li Q; Jiang Y; Han R; Zhong X; Liu S; Li ZY; Sha Y; Xu D
    Small; 2013 Mar; 9(6):927-32. PubMed ID: 23180641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing Chemical Raman Enhancement for Understanding Organic Adsorbate Binding on Metal Surfaces.
    Zayak AT; Choo H; Hu YS; Gargas DJ; Cabrini S; Bokor J; Schuck PJ; Neaton JB
    J Phys Chem Lett; 2012 May; 3(10):1357-62. PubMed ID: 26286783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lighting up the Raman signal of molecules in the vicinity of graphene related materials.
    Ling X; Huang S; Deng S; Mao N; Kong J; Dresselhaus MS; Zhang J
    Acc Chem Res; 2015 Jul; 48(7):1862-70. PubMed ID: 26056861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spiers Memorial Lecture. Surface-enhanced Raman spectroscopy: from single particle/molecule spectroscopy to ångstrom-scale spatial resolution and femtosecond time resolution.
    Henry AI; Ueltschi TW; McAnally MO; Van Duyne RP
    Faraday Discuss; 2017 Dec; 205():9-30. PubMed ID: 28906524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering.
    Mu C; Zhang JP; Xu D
    Nanotechnology; 2010 Jan; 21(1):015604. PubMed ID: 19946166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.