BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 27624769)

  • 1. Comparative analysis of linker histone H1, MeCP2, and HMGD1 on nucleosome stability and target site accessibility.
    Riedmann C; Fondufe-Mittendorf YN
    Sci Rep; 2016 Sep; 6():33186. PubMed ID: 27624769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chromatin architectural proteins HMGD1 and H1 bind reciprocally and have opposite effects on chromatin structure and gene regulation.
    Nalabothula N; McVicker G; Maiorano J; Martin R; Pritchard JK; Fondufe-Mittendorf YN
    BMC Genomics; 2014 Feb; 15():92. PubMed ID: 24484546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MeCP2-chromatin interactions include the formation of chromatosome-like structures and are altered in mutations causing Rett syndrome.
    Nikitina T; Ghosh RP; Horowitz-Scherer RA; Hansen JC; Grigoryev SA; Woodcock CL
    J Biol Chem; 2007 Sep; 282(38):28237-45. PubMed ID: 17660293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF.
    Clausell J; Happel N; Hale TK; Doenecke D; Beato M
    PLoS One; 2009 Oct; 4(10):e0007243. PubMed ID: 19794910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Mechanisms of Nucleosome Recognition by Linker Histones.
    Zhou BR; Jiang J; Feng H; Ghirlando R; Xiao TS; Bai Y
    Mol Cell; 2015 Aug; 59(4):628-38. PubMed ID: 26212454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical analysis and small-angle X-ray scattering-derived structures of MeCP2-nucleosome complexes.
    Yang C; van der Woerd MJ; Muthurajan UM; Hansen JC; Luger K
    Nucleic Acids Res; 2011 May; 39(10):4122-35. PubMed ID: 21278419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array.
    Woods DC; Rodríguez-Ropero F; Wereszczynski J
    J Mol Biol; 2021 May; 433(10):166902. PubMed ID: 33667509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics.
    Bernier M; Luo Y; Nwokelo KC; Goodwin M; Dreher SJ; Zhang P; Parthun MR; Fondufe-Mittendorf Y; Ottesen JJ; Poirier MG
    Nat Commun; 2015 Dec; 6():10152. PubMed ID: 26648124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MeCP2 binds to nucleosome free (linker DNA) regions and to H3K9/H3K27 methylated nucleosomes in the brain.
    Thambirajah AA; Ng MK; Frehlick LJ; Li A; Serpa JJ; Petrotchenko EV; Silva-Moreno B; Missiaen KK; Borchers CH; Adam Hall J; Mackie R; Lutz F; Gowen BE; Hendzel M; Georgel PT; Ausió J
    Nucleic Acids Res; 2012 Apr; 40(7):2884-97. PubMed ID: 22144686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MeCP2 binds cooperatively to its substrate and competes with histone H1 for chromatin binding sites.
    Ghosh RP; Horowitz-Scherer RA; Nikitina T; Shlyakhtenko LS; Woodcock CL
    Mol Cell Biol; 2010 Oct; 30(19):4656-70. PubMed ID: 20679481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MeCP2 preferentially binds to methylated linker DNA in the absence of the terminal tail of histone H3 and independently of histone acetylation.
    Ishibashi T; Thambirajah AA; Ausió J
    FEBS Lett; 2008 Apr; 582(7):1157-62. PubMed ID: 18339321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast HMO1: Linker Histone Reinvented.
    Panday A; Grove A
    Microbiol Mol Biol Rev; 2017 Mar; 81(1):. PubMed ID: 27903656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HMG-D and histone H1 alter the local accessibility of nucleosomal DNA.
    Ragab A; Travers A
    Nucleic Acids Res; 2003 Dec; 31(24):7083-9. PubMed ID: 14654683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H1.0 C Terminal Domain Is Integral for Altering Transcription Factor Binding within Nucleosomes.
    Burge NL; Thuma JL; Hong ZZ; Jamison KB; Ottesen JJ; Poirier MG
    Biochemistry; 2022 Apr; 61(8):625-638. PubMed ID: 35377618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
    Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ
    Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The basic linker of macroH2A stabilizes DNA at the entry/exit site of the nucleosome.
    Chakravarthy S; Patel A; Bowman GD
    Nucleic Acids Res; 2012 Sep; 40(17):8285-95. PubMed ID: 22753032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nucleosome-free region locally abrogates histone H1-dependent restriction of linker DNA accessibility in chromatin.
    Mishra LN; Hayes JJ
    J Biol Chem; 2018 Dec; 293(50):19191-19200. PubMed ID: 30373774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI.
    Clapier CR; Nightingale KP; Becker PB
    Nucleic Acids Res; 2002 Feb; 30(3):649-55. PubMed ID: 11809876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insights into the histone H1-nucleosome complex.
    Zhou BR; Feng H; Kato H; Dai L; Yang Y; Zhou Y; Bai Y
    Proc Natl Acad Sci U S A; 2013 Nov; 110(48):19390-5. PubMed ID: 24218562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.