BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 27625154)

  • 41. Activity diary method for predicting energy expenditure as evaluated by a whole-body indirect human calorimeter.
    Yamamura C; Tanaka S; Futami J; Oka J; Ishikawa-Takata K; Kashiwazaki H
    J Nutr Sci Vitaminol (Tokyo); 2003 Aug; 49(4):262-9. PubMed ID: 14598913
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wrist-Worn Activity Trackers in Laboratory and Free-Living Settings for Patients With Chronic Pain: Criterion Validity Study.
    Sjöberg V; Westergren J; Monnier A; Lo Martire R; Hagströmer M; Äng BO; Vixner L
    JMIR Mhealth Uhealth; 2021 Jan; 9(1):e24806. PubMed ID: 33433391
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel energy expenditure prediction equation for intermittent physical activity.
    Dugas LR; van der Merwe L; Odendaal H; Noakes TD; Lambert EV
    Med Sci Sports Exerc; 2005 Dec; 37(12):2154-61. PubMed ID: 16331144
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Accuracy of an infrared LED device to measure heart rate and energy expenditure during rest and exercise.
    Lee CM; Gorelick M; Mendoza A
    J Sports Sci; 2011 Dec; 29(15):1645-53. PubMed ID: 21995327
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accuracy of Heart Rate Watches: Implications for Weight Management.
    Wallen MP; Gomersall SR; Keating SE; Wisløff U; Coombes JS
    PLoS One; 2016; 11(5):e0154420. PubMed ID: 27232714
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting energy expenditure from accelerometry counts in adolescent girls.
    Schmitz KH; Treuth M; Hannan P; McMurray R; Ring KB; Catellier D; Pate R
    Med Sci Sports Exerc; 2005 Jan; 37(1):155-61. PubMed ID: 15632682
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of Accelerometer Placement and/or Heart Rate on Energy Expenditure Prediction during Uphill Exercise.
    Kuo TBJ; Li JY; Chen CY; Lin YC; Tsai MW; Lin SP; Yang CCH
    J Mot Behav; 2018; 50(2):127-133. PubMed ID: 28850303
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assessment of the heart-rate method for determining energy expenditure in man, using a whole-body calorimeter.
    Dauncey MJ; James WP
    Br J Nutr; 1979 Jul; 42(1):1-13. PubMed ID: 486384
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Validity of SenseWear® Armband v5.2 and v2.2 for estimating energy expenditure.
    Bhammar DM; Sawyer BJ; Tucker WJ; Lee JM; Gaesser GA
    J Sports Sci; 2016 Oct; 34(19):1830-8. PubMed ID: 26854829
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Changes in Oxygen Consumption and Heart Rate After Acute Myocardial Infarction During 6-Month Follow-up.
    Choe Y; Han JY; Choi IS; Park HK
    PM R; 2018 Jun; 10(6):587-593. PubMed ID: 29222074
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of energy expenditure in a whole body indirect calorimeter at both low and high levels of physical activity.
    de Jonge L; Nguyen T; Smith SR; Zachwieja JJ; Roy HJ; Bray GA
    Int J Obes Relat Metab Disord; 2001 Jul; 25(7):929-34. PubMed ID: 11443488
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Energy Expenditure in Vinyasa Yoga Versus Walking.
    Sherman SA; Rogers RJ; Davis KK; Minster RL; Creasy SA; Mullarkey NC; O'Dell M; Donahue P; Jakicic JM
    J Phys Act Health; 2017 Aug; 14(8):597-605. PubMed ID: 28422589
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Estimation of total daily energy expenditure and its components by monitoring the heart rate of Japanese endurance athletes.
    Motonaga K; Yoshida S; Yamagami F; Kawano T; Takeda E
    J Nutr Sci Vitaminol (Tokyo); 2006 Oct; 52(5):360-7. PubMed ID: 17190107
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energy Expenditure and Intensity of Group-Based High-Intensity Functional Training: A Brief Report.
    Willis EA; Szabo-Reed AN; Ptomey LT; Honas JJ; Steger FL; Washburn RA; Donnelly JE
    J Phys Act Health; 2019 Jun; 16(6):470-476. PubMed ID: 31104545
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.
    Chowdhury EA; Western MJ; Nightingale TE; Peacock OJ; Thompson D
    PLoS One; 2017; 12(2):e0171720. PubMed ID: 28234979
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intelligent Estimation of Exercise Induced Energy Expenditure Including Excess Post-Exercise Oxygen Consumption (EPOC) with Different Exercise Intensity.
    Moon J; Oh M; Kim S; Lee K; Lee J; Song Y; Jeon JY
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005621
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Feasibility of heart-rate monitoring to estimate total level and pattern of energy expenditure in a population-based epidemiological study: the Ely Young Cohort Feasibility Study 1994-5.
    Wareham NJ; Hennings SJ; Prentice AM; Day NE
    Br J Nutr; 1997 Dec; 78(6):889-900. PubMed ID: 9497441
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Free-living energy expenditure of adult men assessed by continuous heart-rate monitoring and doubly-labelled water.
    Davidson L; McNeill G; Haggarty P; Smith JS; Franklin MF
    Br J Nutr; 1997 Nov; 78(5):695-708. PubMed ID: 9389894
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of methods to assess energy expenditure and physical activity in people with spinal cord injury.
    Tanhoffer RA; Tanhoffer AI; Raymond J; Hills AP; Davis GM
    J Spinal Cord Med; 2012 Jan; 35(1):35-45. PubMed ID: 22330189
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of the SenseWear Pro Armband to assess energy expenditure during exercise.
    Jakicic JM; Marcus M; Gallagher KI; Randall C; Thomas E; Goss FL; Robertson RJ
    Med Sci Sports Exerc; 2004 May; 36(5):897-904. PubMed ID: 15126727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.