BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 27625416)

  • 1. Morphological changes in senescing petal cells and the regulatory mechanism of petal senescence.
    Shibuya K; Yamada T; Ichimura K
    J Exp Bot; 2016 Oct; 67(20):5909-5918. PubMed ID: 27625416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a NAC transcription factor, EPHEMERAL1, that controls petal senescence in Japanese morning glory.
    Shibuya K; Shimizu K; Niki T; Ichimura K
    Plant J; 2014 Sep; 79(6):1044-51. PubMed ID: 24961791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autophagy regulates progression of programmed cell death during petal senescence in Japanese morning glory.
    Shibuya K; Yamada T; Ichimura K
    Autophagy; 2009 May; 5(4):546-7. PubMed ID: 19337027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. InPSR26, a putative membrane protein, regulates programmed cell death during petal senescence in Japanese morning glory.
    Shibuya K; Yamada T; Suzuki T; Shimizu K; Ichimura K
    Plant Physiol; 2009 Feb; 149(2):816-24. PubMed ID: 19036837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiology and molecular biology of petal senescence.
    van Doorn WG; Woltering EJ
    J Exp Bot; 2008; 59(3):453-80. PubMed ID: 18310084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular aspects of flower senescence and strategies to improve flower longevity.
    Shibuya K
    Breed Sci; 2018 Jan; 68(1):99-108. PubMed ID: 29681752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.
    Lü P; Zhang C; Liu J; Liu X; Jiang G; Jiang X; Khan MA; Wang L; Hong B; Gao J
    Plant J; 2014 May; 78(4):578-90. PubMed ID: 24589134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing ATG6 and PI3K accelerates petal senescence and reduces flower number and shoot biomass in petunia.
    Lin Y; Jones ML
    Plant Sci; 2021 Jan; 302():110713. PubMed ID: 33288020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The swansong of petal cell death: insights into the mechanism and regulation of ethylene-mediated flower senescence.
    Parveen S; Altaf F; Farooq S; Lone ML; Ul Haq A; Tahir I
    J Exp Bot; 2023 Aug; 74(14):3961-3974. PubMed ID: 37280163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves.
    Wagstaff C; Yang TJ; Stead AD; Buchanan-Wollaston V; Roberts JA
    Plant J; 2009 Feb; 57(4):690-705. PubMed ID: 18980641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-Mediated Editing of
    Lin Y; Jones ML
    Front Plant Sci; 2022; 13():840218. PubMed ID: 35557714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homologs of genes associated with programmed cell death in animal cells are differentially expressed during senescence of Ipomoea nil petals.
    Yamada T; Ichimura K; Kanekatsu M; van Doorn WG
    Plant Cell Physiol; 2009 Mar; 50(3):610-25. PubMed ID: 19182226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the cell structure and organelles during autolytic PCD of Antirrhinum majus "Legend White" petals.
    Nabipour Sanjbod R; Chamani E; Pourbeyrami Hir Y; Estaji A
    Protoplasma; 2023 Mar; 260(2):419-435. PubMed ID: 35759085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome and Ubiquitome Changes during Rose Petal Senescence.
    Lu J; Xu Y; Fan Y; Wang Y; Zhang G; Liang Y; Jiang C; Hong B; Gao J; Ma C
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31817087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetics governs senescence.
    Kushwaha A; Mishra V; Tripathi DK; Gupta R; Singh VP
    Plant Reprod; 2024 Mar; 37(1):33-36. PubMed ID: 37594548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant organ senescence - regulation by manifold pathways.
    Wojciechowska N; Sobieszczuk-Nowicka E; Bagniewska-Zadworna A
    Plant Biol (Stuttg); 2018 Mar; 20(2):167-181. PubMed ID: 29178615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular energy depletion triggers programmed cell death during petal senescence in tulip.
    Azad AK; Ishikawa T; Ishikawa T; Sawa Y; Shibata H
    J Exp Bot; 2008; 59(8):2085-95. PubMed ID: 18515833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Petal senescence: a hormone view.
    Ma N; Ma C; Liu Y; Shahid MO; Wang C; Gao J
    J Exp Bot; 2018 Feb; 69(4):719-732. PubMed ID: 29425359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between petal abscission and programmed cell death in Prunus yedoensis and Delphinium belladonna.
    Yamada T; Ichimura K; van Doorn WG
    Planta; 2007 Oct; 226(5):1195-205. PubMed ID: 17618454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal rhythm of petal programmed cell death in Ipomoea purpurea.
    Gui MY; Ni XL; Wang HB; Liu WZ
    Plant Biol (Stuttg); 2016 Sep; 18(5):768-75. PubMed ID: 27259176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.