BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

770 related articles for article (PubMed ID: 27625426)

  • 1. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization.
    Moffitt JR; Hao J; Wang G; Chen KH; Babcock HP; Zhuang X
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):11046-51. PubMed ID: 27625426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy.
    Wang G; Moffitt JR; Zhuang X
    Sci Rep; 2018 Mar; 8(1):4847. PubMed ID: 29555914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplexed detection of RNA using MERFISH and branched DNA amplification.
    Xia C; Babcock HP; Moffitt JR; Zhuang X
    Sci Rep; 2019 May; 9(1):7721. PubMed ID: 31118500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression.
    Xia C; Fan J; Emanuel G; Hao J; Zhuang X
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19490-19499. PubMed ID: 31501331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing.
    Moffitt JR; Hao J; Bambah-Mukku D; Lu T; Dulac C; Zhuang X
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14456-14461. PubMed ID: 27911841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA Imaging with Multiplexed Error-Robust Fluorescence In Situ Hybridization (MERFISH).
    Moffitt JR; Zhuang X
    Methods Enzymol; 2016; 572():1-49. PubMed ID: 27241748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells.
    Chen KH; Boettiger AN; Moffitt JR; Wang S; Zhuang X
    Science; 2015 Apr; 348(6233):aaa6090. PubMed ID: 25858977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MERFISHing for spatial context.
    Shalek AK; Satija R
    Trends Immunol; 2015 Jul; 36(7):390-1. PubMed ID: 26013647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging-based pooled CRISPR screening reveals regulators of lncRNA localization.
    Wang C; Lu T; Emanuel G; Babcock HP; Zhuang X
    Proc Natl Acad Sci U S A; 2019 May; 116(22):10842-10851. PubMed ID: 31085639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing.
    Liu J; Tran V; Vemuri VNP; Byrne A; Borja M; Kim YJ; Agarwal S; Wang R; Awayan K; Murti A; Taychameekiatchai A; Wang B; Emanuel G; He J; Haliburton J; Oliveira Pisco A; Neff NF
    Life Sci Alliance; 2023 Jan; 6(1):. PubMed ID: 36526371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning.
    Laubscher E; Wang X; Razin N; Dougherty T; Xu RJ; Ombelets L; Pao E; Graf W; Moffitt JR; Yue Y; Van Valen D
    Cell Syst; 2024 May; 15(5):475-482.e6. PubMed ID: 38754367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational solutions for spatial transcriptomics.
    Kleino I; FrolovaitÄ— P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin.
    Su JH; Zheng P; Kinrot SS; Bintu B; Zhuang X
    Cell; 2020 Sep; 182(6):1641-1659.e26. PubMed ID: 32822575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell segmentation in imaging-based spatial transcriptomics.
    Petukhov V; Xu RJ; Soldatov RA; Cadinu P; Khodosevich K; Moffitt JR; Kharchenko PV
    Nat Biotechnol; 2022 Mar; 40(3):345-354. PubMed ID: 34650268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell segmentation-free inference of cell types from in situ transcriptomics data.
    Park J; Choi W; Tiesmeyer S; Long B; Borm LE; Garren E; Nguyen TN; Tasic B; Codeluppi S; Graf T; Schlesner M; Stegle O; Eils R; Ishaque N
    Nat Commun; 2021 Jun; 12(1):3545. PubMed ID: 34112806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells.
    Cui Y; Hu D; Markillie LM; Chrisler WB; Gaffrey MJ; Ansong C; Sussel L; Orr G
    Nucleic Acids Res; 2018 Jan; 46(2):e7. PubMed ID: 29040675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping Cellular Coordinates through Advances in Spatial Transcriptomics Technology.
    Teves JM; Won KJ
    Mol Cells; 2020 Jul; 43(7):591-599. PubMed ID: 32507771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling the transcriptome with RNA SPOTs.
    Eng CL; Shah S; Thomassie J; Cai L
    Nat Methods; 2017 Dec; 14(12):1153-1155. PubMed ID: 29131163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic recording and in situ readout of lineage information in single cells.
    Frieda KL; Linton JM; Hormoz S; Choi J; Chow KK; Singer ZS; Budde MW; Elowitz MB; Cai L
    Nature; 2017 Jan; 541(7635):107-111. PubMed ID: 27869821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer vision for image-based transcriptomics.
    Stoeger T; Battich N; Herrmann MD; Yakimovich Y; Pelkmans L
    Methods; 2015 Sep; 85():44-53. PubMed ID: 26014038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.