These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 27626102)

  • 1. Diphenylether-Modified 1,2-Diamines with Improved Drug Properties for Development against Mycobacterium tuberculosis.
    Foss MH; Pou S; Davidson PM; Dunaj JL; Winter RW; Pou S; Licon MH; Doh JK; Li Y; Kelly JX; Dodean RA; Koop DR; Riscoe MK; Purdy GE
    ACS Infect Dis; 2016 Jul; 2(7):500-8. PubMed ID: 27626102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A piperidinol-containing molecule is active against
    Dupont C; Chen Y; Xu Z; Roquet-Banères F; Blaise M; Witt AK; Dubar F; Biot C; Guérardel Y; Maurer FP; Chng SS; Kremer L
    J Biol Chem; 2019 Nov; 294(46):17512-17523. PubMed ID: 31562241
    [No Abstract]   [Full Text] [Related]  

  • 3. Novel polycyclic 'cage'-1,2-diamines as potential anti-tuberculosis agents.
    Onajole OK; Coovadia Y; Kruger HG; Maguire GE; Pillay M; Govender T
    Eur J Med Chem; 2012 Aug; 54():1-9. PubMed ID: 22658084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of novel [1,2]-diamines with antituberculosis activity.
    Meng Q; Luo H; Chen Y; Wang T; Yao Q
    Bioorg Med Chem Lett; 2009 Sep; 19(18):5372-5. PubMed ID: 19682895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adjuvant therapies against tuberculosis: discovery of a 2-aminothiazole targeting Mycobacterium tuberculosis energetics.
    Machado D; Azzali E; Couto I; Costantino G; Pieroni M; Viveiros M
    Future Microbiol; 2018 Sep; 13():1383-1402. PubMed ID: 30259757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered drug efflux under iron deprivation unveils abrogated MmpL3 driven mycolic acid transport and fluidity in mycobacteria.
    Pal R; Hameed S; Fatima Z
    Biometals; 2019 Feb; 32(1):49-63. PubMed ID: 30430296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HC2091 Kills Mycobacterium tuberculosis by Targeting the MmpL3 Mycolic Acid Transporter.
    Zheng H; Williams JT; Coulson GB; Haiderer ER; Abramovitch RB
    Antimicrob Agents Chemother; 2018 Jul; 62(7):. PubMed ID: 29661875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indole-2-carboxamide-based MmpL3 Inhibitors Show Exceptional Antitubercular Activity in an Animal Model of Tuberculosis Infection.
    Stec J; Onajole OK; Lun S; Guo H; Merenbloom B; Vistoli G; Bishai WR; Kozikowski AP
    J Med Chem; 2016 Jul; 59(13):6232-47. PubMed ID: 27275668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis and investigation on the structure-activity relationships of N-substituted 2-aminothiazole derivatives as antitubercular agents.
    Pieroni M; Wan B; Cho S; Franzblau SG; Costantino G
    Eur J Med Chem; 2014 Jan; 72():26-34. PubMed ID: 24333612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of ssDNA aptamers as potent inhibitors of Mycobacterium tuberculosis acetohydroxyacid synthase.
    Baig IA; Moon JY; Lee SC; Ryoo SW; Yoon MY
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1338-50. PubMed ID: 25988243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiology. TB--a new target, a new drug.
    Cole ST; Alzari PM
    Science; 2005 Jan; 307(5707):214-5. PubMed ID: 15653490
    [No Abstract]   [Full Text] [Related]  

  • 12. Novel linear diamine disubstituted polycyclic 'cage' derivatives as potential antimycobacterial candidates.
    Onajole OK; Sosibo S; Govender P; Govender T; van Helden PD; Maguire GE; Mlinarić-Majerski K; Wiid I; Kruger HG
    Chem Biol Drug Des; 2011 Dec; 78(6):1022-30. PubMed ID: 21920029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Advances in Antitubercular Drug Discovery: Potent Prototypes and New Targets.
    Dos Santos Fernandes GF; Jornada DH; de Souza PC; Chin CM; Pavan FR; Dos Santos JL
    Curr Med Chem; 2015; 22(27):3133-61. PubMed ID: 26282941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunometabolism during Mycobacterium tuberculosis Infection.
    Howard NC; Khader SA
    Trends Microbiol; 2020 Oct; 28(10):832-850. PubMed ID: 32409147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development.
    Bailo R; Bhatt A; Aínsa JA
    Biochem Pharmacol; 2015 Aug; 96(3):159-67. PubMed ID: 25986884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, Synthesis, and Evaluation of Novel Hybrid Efflux Pump Inhibitors for Use against Mycobacterium tuberculosis.
    Kumar M; Singh K; Naran K; Hamzabegovic F; Hoft DF; Warner DF; Ruminski P; Abate G; Chibale K
    ACS Infect Dis; 2016 Oct; 2(10):714-725. PubMed ID: 27737555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New potential drug leads against MDR-MTB: A short review.
    Gatadi S; Nanduri S
    Bioorg Chem; 2020 Jan; 95():103534. PubMed ID: 31884135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of TB-E12 as a novel FtsZ inhibitor with anti-tuberculosis activity.
    Lin Y; Zhang H; Zhu N; Wang X; Han Y; Chen M; Jiang J; Si S
    Tuberculosis (Edinb); 2018 May; 110():79-85. PubMed ID: 29779778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.