These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 27626127)
41. Direct visualization of dynamic protein-DNA interactions with a dedicated atomic force microscope. van Noort SJ; van der Werf KO; Eker AP; Wyman C; de Grooth BG; van Hulst NF; Greve J Biophys J; 1998 Jun; 74(6):2840-9. PubMed ID: 9635738 [TBL] [Abstract][Full Text] [Related]
42. The Arginine Pairs and C-Termini of the Sso7c4 from Sulfolobus solfataricus Participate in Binding and Bending DNA. Lin BL; Chen CY; Huang CH; Ko TP; Chiang CH; Lin KF; Chang YC; Lin PY; Tsai HG; Wang AH PLoS One; 2017; 12(1):e0169627. PubMed ID: 28068385 [TBL] [Abstract][Full Text] [Related]
43. Crystal structure of an archaeal Sm protein from Sulfolobus solfataricus. Kilic T; Thore S; Suck D Proteins; 2005 Nov; 61(3):689-93. PubMed ID: 16184597 [No Abstract] [Full Text] [Related]
44. Temperature-induced conformational change at the catalytic site of Sulfolobus solfataricus alcohol dehydrogenase highlighted by Asn249Tyr substitution. A hydrogen/deuterium exchange, kinetic, and fluorescence quenching study. Secundo F; Russo C; Giordano A; Carrea G; Rossi M; Raia CA Biochemistry; 2005 Aug; 44(33):11040-8. PubMed ID: 16101287 [TBL] [Abstract][Full Text] [Related]
45. Non-mutagenic repair of (6-4)photoproducts by (6-4)photolyase purified from Drosophila melanogaster. Todo T; Ryo H; Borden A; Lawrence C; Sakaguchi K; Hirata H; Nomura T Mutat Res; 1997 Nov; 385(2):83-93. PubMed ID: 9447230 [TBL] [Abstract][Full Text] [Related]
46. Mitochondrial DNA repair by photolyase. Yasui A; Yajima H; Kobayashi T; Eker AP; Oikawa A Mutat Res; 1992 Mar; 273(2):231-6. PubMed ID: 1372106 [TBL] [Abstract][Full Text] [Related]
47. 6MAP, a fluorescent adenine analogue, is a probe of base flipping by DNA photolyase. Yang K; Matsika S; Stanley RJ J Phys Chem B; 2007 Sep; 111(35):10615-25. PubMed ID: 17696385 [TBL] [Abstract][Full Text] [Related]
48. Characterization of the trehalosyl dextrin-forming enzyme from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. Fang TY; Hung XG; Shih TY; Tseng WC Extremophiles; 2004 Aug; 8(4):335-43. PubMed ID: 15150700 [TBL] [Abstract][Full Text] [Related]
49. Coexistence of Different Electron-Transfer Mechanisms in the DNA Repair Process by Photolyase. Lee W; Kodali G; Stanley RJ; Matsika S Chemistry; 2016 Aug; 22(32):11371-81. PubMed ID: 27362906 [TBL] [Abstract][Full Text] [Related]
50. Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. Weber S Biochim Biophys Acta; 2005 Feb; 1707(1):1-23. PubMed ID: 15721603 [TBL] [Abstract][Full Text] [Related]
51. Characterization of an archaeal recombinase paralog that exhibits novel anti-recombinase activity. Knadler C; Rolfsmeier M; Vallejo A; Haseltine C Mutat Res; 2020; 821():111703. PubMed ID: 32416400 [TBL] [Abstract][Full Text] [Related]
52. Coulomb and CH-π interactions in (6-4) photolyase-DNA complex dominate DNA binding and repair abilities. Terai Y; Sato R; Yumiba T; Harada R; Shimizu K; Toga T; Ishikawa-Fujiwara T; Todo T; Iwai S; Shigeta Y; Yamamoto J Nucleic Acids Res; 2018 Jul; 46(13):6761-6772. PubMed ID: 29762762 [TBL] [Abstract][Full Text] [Related]
53. Residues at a Single Site Differentiate Animal Cryptochromes from Cyclobutane Pyrimidine Dimer Photolyases by Affecting the Proteins' Preferences for Reduced FAD. Xu L; Wen B; Wang Y; Tian C; Wu M; Zhu G Chembiochem; 2017 Jun; 18(12):1129-1137. PubMed ID: 28393477 [TBL] [Abstract][Full Text] [Related]
54. Natural and non-natural antenna chromophores in the DNA photolyase from Thermus thermophilus. Klar T; Kaiser G; Hennecke U; Carell T; Batschauer A; Essen LO Chembiochem; 2006 Nov; 7(11):1798-806. PubMed ID: 17051659 [TBL] [Abstract][Full Text] [Related]
55. Biochemical characterization and mutational improvement of a thermophilic esterase from Sulfolobus solfataricus P2. Shang YS; Zhang XE; Wang XD; Guo YC; Zhang ZP; Zhou YF Biotechnol Lett; 2010 Aug; 32(8):1151-7. PubMed ID: 20386955 [TBL] [Abstract][Full Text] [Related]
56. DNA repair by photolyase: a novel substrate with low background absorption around 265 nm for transient absorption studies in the UV. Thiagarajan V; Villette S; Espagne A; Eker AP; Brettel K; Byrdin M Biochemistry; 2010 Jan; 49(2):297-303. PubMed ID: 20000331 [TBL] [Abstract][Full Text] [Related]
57. Activity assay of His-tagged E. coli DNA photolyase by RP-HPLC and SE-HPLC. Mu W; Zhang D; Xu L; Luo Z; Wang Y J Biochem Biophys Methods; 2005 May; 63(2):111-24. PubMed ID: 15916808 [TBL] [Abstract][Full Text] [Related]
58. Characterization of a multifunctional protein disulfide oxidoreductase from Sulfolobus solfataricus. Pedone E; Limauro D; D'Alterio R; Rossi M; Bartolucci S FEBS J; 2006 Dec; 273(23):5407-20. PubMed ID: 17076700 [TBL] [Abstract][Full Text] [Related]
59. Excited-state proton coupled electron transfer between photolyase and the damaged DNA through water wire: a photo-repair mechanism. Wang H; Chen X; Fang W Phys Chem Chem Phys; 2014 Dec; 16(46):25432-41. PubMed ID: 25341360 [TBL] [Abstract][Full Text] [Related]
60. Reaction of Escherichia coli and yeast photolyases with homogeneous short-chain oligonucleotide substrates. Jordan SP; Alderfer JL; Chanderkar LP; Jorns MS Biochemistry; 1989 Oct; 28(20):8149-53. PubMed ID: 2690934 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]