BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 27626360)

  • 1. Exploring Oxidative Reactions in Hemoglobin Variants Using Mass Spectrometry: Lessons for Engineering Oxidatively Stable Oxygen Therapeutics.
    Strader MB; Alayash AI
    Antioxid Redox Signal; 2017 May; 26(14):777-793. PubMed ID: 27626360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive Biochemical and Biophysical Characterization of Hemoglobin-Based Oxygen Carrier Therapeutics: All HBOCs Are Not Created Equally.
    Meng F; Kassa T; Jana S; Wood F; Zhang X; Jia Y; D'Agnillo F; Alayash AI
    Bioconjug Chem; 2018 May; 29(5):1560-1575. PubMed ID: 29570272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Providence Mutation (βK82D) in Human Hemoglobin Substantially Reduces βCysteine 93 Oxidation and Oxidative Stress in Endothelial Cells.
    Jana S; Strader MB; Alayash AI
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33322551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-specific cross-linking of human and bovine hemoglobins differentially alters oxygen binding and redox side reactions producing rhombic heme and heme degradation.
    Nagababu E; Ramasamy S; Rifkind JM; Jia Y; Alayash AI
    Biochemistry; 2002 Jun; 41(23):7407-15. PubMed ID: 12044174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox Chemistry of Hemoglobin-Associated Disorders.
    Bulow L; Alayash AI
    Antioxid Redox Signal; 2017 May; 26(14):745-747. PubMed ID: 28398821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of Toxicity and Modulation of Hemoglobin-based Oxygen Carriers.
    Alayash AI
    Shock; 2019 Oct; 52(1S Suppl 1):41-49. PubMed ID: 29112106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-generation blood substitutes: what have we learned? Biochemical and physiological perspectives.
    Alayash AI; D'Agnillo F; Buehler PW
    Expert Opin Biol Ther; 2007 May; 7(5):665-75. PubMed ID: 17477804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-translational transformation of methionine to aspartate is catalyzed by heme iron and driven by peroxide: a novel subunit-specific mechanism in hemoglobin.
    Strader MB; Hicks WA; Kassa T; Singleton E; Soman J; Olson JS; Weiss MJ; Mollan TL; Wilson MT; Alayash AI
    J Biol Chem; 2014 Aug; 289(32):22342-57. PubMed ID: 24939847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allosteric effects on oxidative and nitrosative reactions of cell-free hemoglobins.
    Bonaventura C; Henkens R; Alayash AI; Crumbliss AL
    IUBMB Life; 2007; 59(8-9):498-505. PubMed ID: 17701544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of recombinant hemoglobin-based oxygen carriers.
    Varnado CL; Mollan TL; Birukou I; Smith BJ; Henderson DP; Olson JS
    Antioxid Redox Signal; 2013 Jun; 18(17):2314-28. PubMed ID: 23025383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular controls of the oxygenation and redox reactions of hemoglobin.
    Bonaventura C; Henkens R; Alayash AI; Banerjee S; Crumbliss AL
    Antioxid Redox Signal; 2013 Jun; 18(17):2298-313. PubMed ID: 23198874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of redox potential of hemoglobin-based oxygen carriers on methemoglobin reduction by plasma components.
    Dorman SC; Kenny CF; Miller L; Hirsch RE; Harrington JP
    Artif Cells Blood Substit Immobil Biotechnol; 2002 Jan; 30(1):39-51. PubMed ID: 12000225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All hemoglobin-based oxygen carriers are not created equally.
    Buehler PW; Alayash AI
    Biochim Biophys Acta; 2008 Oct; 1784(10):1378-81. PubMed ID: 18206989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining and mitigating acellular hemoglobin vasoactivity.
    Cabrales P
    Antioxid Redox Signal; 2013 Jun; 18(17):2329-41. PubMed ID: 22938394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering tyrosine residues into hemoglobin enhances heme reduction, decreases oxidative stress and increases vascular retention of a hemoglobin based blood substitute.
    Cooper CE; Silkstone GGA; Simons M; Rajagopal B; Syrett N; Shaik T; Gretton S; Welbourn E; Bülow L; Eriksson NL; Ronda L; Mozzarelli A; Eke A; Mathe D; Reeder BJ
    Free Radic Biol Med; 2019 Apr; 134():106-118. PubMed ID: 30594736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HBOC vasoactivity: interplay between nitric oxide scavenging and capacity to generate bioactive nitric oxide species.
    Cabrales P; Friedman JM
    Antioxid Redox Signal; 2013 Jun; 18(17):2284-97. PubMed ID: 23249305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safety and efficacy of o-raffinose cross-linked human hemoglobin (Hemolink) in cardiac surgery.
    Cheng DC
    Can J Anaesth; 2001 Apr; 48(4 Suppl):S41-8. PubMed ID: 11336436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current Challenges in the Development of Acellular Hemoglobin Oxygen Carriers by Protein Engineering.
    Benitez Cardenas AS; Samuel PP; Olson JS
    Shock; 2019 Oct; 52(1S Suppl 1):28-40. PubMed ID: 29112633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers.
    Jansman MMT; Hosta-Rigau L
    Adv Colloid Interface Sci; 2018 Oct; 260():65-84. PubMed ID: 30177214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acellular invertebrate hemoglobins as model therapeutic oxygen carriers: unique redox potentials.
    Harrington JP; Kobayashi S; Dorman SC; Zito SL; Hirsch RE
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(1):53-67. PubMed ID: 17364471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.