These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27626823)

  • 1. A High-Throughput Targeted Proteomic Approach for Comprehensive Profiling of Methylglyoxal-Induced Perturbations of the Human Kinome.
    Miao W; Xiao Y; Guo L; Jiang X; Huang M; Wang Y
    Anal Chem; 2016 Oct; 88(19):9773-9779. PubMed ID: 27626823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A targeted quantitative proteomics strategy for global kinome profiling of cancer cells and tissues.
    Xiao Y; Guo L; Wang Y
    Mol Cell Proteomics; 2014 Apr; 13(4):1065-75. PubMed ID: 24520089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of adenosine triphosphate affinity probe and scheduled multiple-reaction monitoring analysis for profiling global kinome in human cells in response to arsenite treatment.
    Guo L; Xiao Y; Wang Y
    Anal Chem; 2014 Nov; 86(21):10700-7. PubMed ID: 25301106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for kinome profiling in cancer and potential clinical applications: chemical proteomics and array-based methods.
    Piersma SR; Labots M; Verheul HM; Jiménez CR
    Anal Bioanal Chem; 2010 Aug; 397(8):3163-71. PubMed ID: 20526883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of MEKK1/ERK/P21Waf1/Cip1 signal transduction pathway in inhibition of IGF-I-mediated cell growth response by methylglyoxal.
    Du J; Cai S; Suzuki H; Akhand AA; Ma X; Takagi Y; Miyata T; Nakashima I; Nagase F
    J Cell Biochem; 2003 Apr; 88(6):1235-46. PubMed ID: 12647305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the novel broad-spectrum kinase inhibitor CTx-0294885 as an affinity reagent for mass spectrometry-based kinome profiling.
    Zhang L; Holmes IP; Hochgräfe F; Walker SR; Ali NA; Humphrey ES; Wu J; de Silva M; Kersten WJ; Connor T; Falk H; Allan L; Street IP; Bentley JD; Pilling PA; Monahan BJ; Peat TS; Daly RJ
    J Proteome Res; 2013 Jul; 12(7):3104-16. PubMed ID: 23692254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylglyoxal attenuates insulin signaling and downregulates the enzymes involved in cholesterol biosynthesis.
    Deshmukh AB; Bai S; T A; Kazi RS; Banarjee R; Rathore R; Mv V; Hv T; Kumar Bhat M; Mj K
    Mol Biosyst; 2017 Oct; 13(11):2338-2349. PubMed ID: 28926063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylglyoxal and advanced glycation end-products promote cytokines expression in peritoneal mesothelial cells via MAPK signaling.
    Hong FY; Bao JF; Hao J; Yu Q; Liu J
    Am J Med Sci; 2015 Feb; 349(2):105-9. PubMed ID: 25581570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity-Based Kinome Profiling Using Chemical Proteomics and ATP Acyl Phosphates.
    Franks CE; Hsu KL
    Curr Protoc Chem Biol; 2019 Sep; 11(3):e72. PubMed ID: 31483100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Afatinib resistance in non-small cell lung cancer involves the PI3K/AKT and MAPK/ERK signalling pathways and epithelial-to-mesenchymal transition.
    Coco S; Truini A; Alama A; Dal Bello MG; Venè R; Garuti A; Carminati E; Rijavec E; Genova C; Barletta G; Sini C; Ballestrero A; Boccardo F; Grossi F
    Target Oncol; 2015 Sep; 10(3):393-404. PubMed ID: 25341405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lentiviral short hairpin RNA screen of human kinases and phosphatases to identify potential biomarkers in oral squamous cancer cells.
    Yeh MH; Tsai TC; Kuo HP; Chang NW; Lee MR; Chung JG; Tsai MH; Liu JY; Kao MC
    Int J Oncol; 2011 Nov; 39(5):1221-31. PubMed ID: 21720705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extending kinome coverage by analysis of kinase inhibitor broad profiling data.
    Jacoby E; Tresadern G; Bembenek S; Wroblowski B; Buyck C; Neefs JM; Rassokhin D; Poncelet A; Hunt J; van Vlijmen H
    Drug Discov Today; 2015 Jun; 20(6):652-8. PubMed ID: 25596550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive kinome NGS targeted expression profiling by KING-REX.
    Carapezza G; Cusi C; Rizzo E; Raddrizzani L; Di Bella S; Somaschini A; Leone A; Lupi R; Mutarelli M; Nigro V; di Bernardo D; Magni P; Isacchi A; Bosotti R
    BMC Genomics; 2019 Apr; 20(1):307. PubMed ID: 31014245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylglyoxal induces apoptosis through activation of p38 mitogen-activated protein kinase in rat mesangial cells.
    Liu BF; Miyata S; Hirota Y; Higo S; Miyazaki H; Fukunaga M; Hamada Y; Ueyama S; Muramoto O; Uriuhara A; Kasuga M
    Kidney Int; 2003 Mar; 63(3):947-57. PubMed ID: 12631075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global tyrosine kinome profiling of human thyroid tumors identifies Src as a promising target for invasive cancers.
    Cho NL; Lin CI; Du J; Whang EE; Ito H; Moore FD; Ruan DT
    Biochem Biophys Res Commun; 2012 May; 421(3):508-13. PubMed ID: 22521882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylglyoxal suppresses TNF-alpha-induced NF-kappaB activation by inhibiting NF-kappaB DNA-binding.
    Laga M; Cottyn A; Van Herreweghe F; Vanden Berghe W; Haegeman G; Van Oostveldt P; Vandekerckhove J; Vancompernolle K
    Biochem Pharmacol; 2007 Aug; 74(4):579-89. PubMed ID: 17617381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylglyoxal activates NF-κB nuclear translocation and induces COX-2 expression via a p38-dependent pathway in synovial cells.
    Lin CC; Chan CM; Huang YP; Hsu SH; Huang CL; Tsai SJ
    Life Sci; 2016 Mar; 149():25-33. PubMed ID: 26898122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory effect of vanillic acid on methylglyoxal-mediated glycation in apoptotic Neuro-2A cells.
    Huang SM; Hsu CL; Chuang HC; Shih PH; Wu CH; Yen GC
    Neurotoxicology; 2008 Nov; 29(6):1016-22. PubMed ID: 18706441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic approach for analysis of peptide array kinome data.
    Li Y; Arsenault RJ; Trost B; Slind J; Griebel PJ; Napper S; Kusalik A
    Sci Signal; 2012 Apr; 5(220):pl2. PubMed ID: 22510468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urokinase-induced smooth muscle cell responses require distinct signaling pathways: a role for the epidermal growth factor receptor.
    Nicholl SM; Roztocil E; Davies MG
    J Vasc Surg; 2005 Apr; 41(4):672-81. PubMed ID: 15874933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.