These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 27626829)
1. Structure of the Reduced Copper Active Site in Preprocessed Galactose Oxidase: Ligand Tuning for One-Electron O Cowley RE; Cirera J; Qayyum MF; Rokhsana D; Hedman B; Hodgson KO; Dooley DM; Solomon EI J Am Chem Soc; 2016 Oct; 138(40):13219-13229. PubMed ID: 27626829 [TBL] [Abstract][Full Text] [Related]
2. Role of the Tyr-Cys cross-link to the active site properties of galactose oxidase. Rokhsana D; Howells AE; Dooley DM; Szilagyi RK Inorg Chem; 2012 Mar; 51(6):3513-24. PubMed ID: 22372371 [TBL] [Abstract][Full Text] [Related]
4. Cross-link formation of the cysteine 228-tyrosine 272 catalytic cofactor of galactose oxidase does not require dioxygen. Rogers MS; Hurtado-Guerrero R; Firbank SJ; Halcrow MA; Dooley DM; Phillips SE; Knowles PF; McPherson MJ Biochemistry; 2008 Sep; 47(39):10428-39. PubMed ID: 18771294 [TBL] [Abstract][Full Text] [Related]
5. Tyrosine or Tryptophan? Modifying a Metalloradical Catalytic Site by Removal of the Cys-Tyr Cross-Link in the Galactose 6-Oxidase Homologue GlxA. Chaplin AK; Bernini C; Sinicropi A; Basosi R; Worrall JAR; Svistunenko DA Angew Chem Int Ed Engl; 2017 Jun; 56(23):6502-6506. PubMed ID: 28464409 [TBL] [Abstract][Full Text] [Related]
6. Kinetic isotope effects as probes of the mechanism of galactose oxidase. Whittaker MM; Ballou DP; Whittaker JW Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494 [TBL] [Abstract][Full Text] [Related]
10. Formation of Monofluorinated Radical Cofactor in Galactose Oxidase through Copper-Mediated C-F Bond Scission. Li J; Davis I; Griffith WP; Liu A J Am Chem Soc; 2020 Nov; 142(44):18753-18757. PubMed ID: 33091303 [TBL] [Abstract][Full Text] [Related]
11. Kβ X-ray Emission Spectroscopy as a Probe of Cu(I) Sites: Application to the Cu(I) Site in Preprocessed Galactose Oxidase. Lim H; Baker ML; Cowley RE; Kim S; Bhadra M; Siegler MA; Kroll T; Sokaras D; Weng TC; Biswas DR; Dooley DM; Karlin KD; Hedman B; Hodgson KO; Solomon EI Inorg Chem; 2020 Nov; 59(22):16567-16581. PubMed ID: 33136386 [TBL] [Abstract][Full Text] [Related]
12. Structure of the oxidized active site of galactose oxidase from realistic in silico models. Rokhsana D; Dooley DM; Szilagyi RK J Am Chem Soc; 2006 Dec; 128(49):15550-1. PubMed ID: 17147339 [TBL] [Abstract][Full Text] [Related]
13. Construction and analysis of a semi-quantitative energy profile for the reaction catalyzed by the radical enzyme galactose oxidase. Wachter RM; Branchaud BP Biochim Biophys Acta; 1998 Apr; 1384(1):43-54. PubMed ID: 9602051 [TBL] [Abstract][Full Text] [Related]
14. Galactose oxidase models: solution chemistry, and phenoxyl radical generation mediated by the copper status. Michel F; Thomas F; Hamman S; Saint-Aman E; Bucher C; Pierre JL Chemistry; 2004 Sep; 10(17):4115-25. PubMed ID: 15352095 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the Preprocessed Copper Site Equilibrium in Amine Oxidase and Assignment of the Reactive Copper Site in Topaquinone Biogenesis. Adelson CN; Johnston EM; Hilmer KM; Watts H; Dey SG; Brown DE; Broderick JB; Shepard EM; Dooley DM; Solomon EI J Am Chem Soc; 2019 Jun; 141(22):8877-8890. PubMed ID: 31060358 [TBL] [Abstract][Full Text] [Related]
17. The electronic structure of the Cys-Tyr(*) free radical in galactose oxidase determined by EPR spectroscopy. Lee YK; Whittaker MM; Whittaker JW Biochemistry; 2008 Jun; 47(25):6637-49. PubMed ID: 18512952 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases. Kjaergaard CH; Qayyum MF; Wong SD; Xu F; Hemsworth GR; Walton DJ; Young NA; Davies GJ; Walton PH; Johansen KS; Hodgson KO; Hedman B; Solomon EI Proc Natl Acad Sci U S A; 2014 Jun; 111(24):8797-802. PubMed ID: 24889637 [TBL] [Abstract][Full Text] [Related]
19. Partial conversion of Hansenula polymorpha amine oxidase into a "plant" amine oxidase: implications for copper chemistry and mechanism. Welford RW; Lam A; Mirica LM; Klinman JP Biochemistry; 2007 Sep; 46(38):10817-27. PubMed ID: 17760423 [TBL] [Abstract][Full Text] [Related]
20. Cu(II)-mediated phenol oxygenation: chemical evidence implicates a unique role of the enzyme active site in promoting the chemically difficult tyrosine monooxygenation in TPQ cofactor biogenesis of copper amine oxidases. Fu Z; Xu F; Cai H Bioorg Chem; 2015 Apr; 59():31-8. PubMed ID: 25676362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]