These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 27626931)

  • 1. Approaches to Regularized Regression - A Comparison between Gradient Boosting and the Lasso.
    Hepp T; Schmid M; Gefeller O; Waldmann E; Mayr A
    Methods Inf Med; 2016 Oct; 55(5):422-430. PubMed ID: 27626931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Randomized boosting with multivariable base-learners for high-dimensional variable selection and prediction.
    Staerk C; Mayr A
    BMC Bioinformatics; 2021 Sep; 22(1):441. PubMed ID: 34530737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection.
    Mayr A; Hofner B; Schmid M
    BMC Bioinformatics; 2016 Jul; 17():288. PubMed ID: 27444890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extending statistical boosting. An overview of recent methodological developments.
    Mayr A; Binder H; Gefeller O; Schmid M
    Methods Inf Med; 2014; 53(6):428-35. PubMed ID: 25112429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-dimensional Cox models: the choice of penalty as part of the model building process.
    Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U
    Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparse boosting for high-dimensional survival data with varying coefficients.
    Yue M; Li J; Ma S
    Stat Med; 2018 Feb; 37(5):789-800. PubMed ID: 29152776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable selection in linear regression models: Choosing the best subset is not always the best choice.
    Hanke M; Dijkstra L; Foraita R; Didelez V
    Biom J; 2024 Jan; 66(1):e2200209. PubMed ID: 37643390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lasso regularization for left-censored Gaussian outcome and high-dimensional predictors.
    Soret P; Avalos M; Wittkop L; Commenges D; Thiébaut R
    BMC Med Res Methodol; 2018 Dec; 18(1):159. PubMed ID: 30514234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing Bayesian Variable Selection to Lasso Approaches for Applications in Psychology.
    Bainter SA; McCauley TG; Fahmy MM; Goodman ZT; Kupis LB; Rao JS
    Psychometrika; 2023 Sep; 88(3):1032-1055. PubMed ID: 37217762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling false discoveries in high-dimensional situations: boosting with stability selection.
    Hofner B; Boccuto L; Göker M
    BMC Bioinformatics; 2015 May; 16():144. PubMed ID: 25943565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable selection for multiply-imputed data with application to dioxin exposure study.
    Chen Q; Wang S
    Stat Med; 2013 Sep; 32(21):3646-59. PubMed ID: 23526243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable variable ranking and selection in regularized logistic regression for severely imbalanced big binary data.
    Nadeem K; Jabri MA
    PLoS One; 2023; 18(1):e0280258. PubMed ID: 36649281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sign-based Shrinkage Based on an Asymmetric LASSO Penalty.
    Kawaguchi ES; Darst BF; Wang K; Conti DV
    J Data Sci; 2021; 19(3):429-449. PubMed ID: 35222618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sparse kernel learning with LASSO and Bayesian inference algorithm.
    Gao J; Kwan PW; Shi D
    Neural Netw; 2010 Mar; 23(2):257-64. PubMed ID: 19604671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seagull: lasso, group lasso and sparse-group lasso regularization for linear regression models via proximal gradient descent.
    Klosa J; Simon N; Westermark PO; Liebscher V; Wittenburg D
    BMC Bioinformatics; 2020 Sep; 21(1):407. PubMed ID: 32933477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of biomarker-by-treatment interactions in randomized clinical trials with survival outcomes and high-dimensional spaces.
    Ternès N; Rotolo F; Heinze G; Michiels S
    Biom J; 2017 Jul; 59(4):685-701. PubMed ID: 27862181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data.
    Bastien P; Bertrand F; Meyer N; Maumy-Bertrand M
    Bioinformatics; 2015 Feb; 31(3):397-404. PubMed ID: 25286920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensembling Variable Selectors by Stability Selection for the Cox Model.
    Yin QY; Li JL; Zhang CX
    Comput Intell Neurosci; 2017; 2017():2747431. PubMed ID: 29270195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regularized Regression Versus the High-Dimensional Propensity Score for Confounding Adjustment in Secondary Database Analyses.
    Franklin JM; Eddings W; Glynn RJ; Schneeweiss S
    Am J Epidemiol; 2015 Oct; 182(7):651-9. PubMed ID: 26233956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events.
    Pavlou M; Ambler G; Seaman S; De Iorio M; Omar RZ
    Stat Med; 2016 Mar; 35(7):1159-77. PubMed ID: 26514699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.