These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27627280)

  • 1. Optimal control of the power adiabatic stroke of an optomechanical heat engine.
    Bathaee M; Bahrampour AR
    Phys Rev E; 2016 Aug; 94(2-1):022141. PubMed ID: 27627280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Quantum Friction and Optimal Finite-Time Performance of the Quantum Otto Cycle.
    Insinga AR
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum synchronization in an optomechanical system based on Lyapunov control.
    Li W; Li C; Song H
    Phys Rev E; 2016 Jun; 93(6):062221. PubMed ID: 27415268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency at maximum power of a heat engine working with a two-level atomic system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum optomechanical heat engine.
    Zhang K; Bariani F; Meystre P
    Phys Rev Lett; 2014 Apr; 112(15):150602. PubMed ID: 24785017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of interference in the photosynthetic heat engine.
    Xu YY; Liu J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052131. PubMed ID: 25493763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algorithmic quantum heat engines.
    Köse E; Çakmak S; Gençten A; Kominis IK; Müstecaplıoğlu ÖE
    Phys Rev E; 2019 Jul; 100(1-1):012109. PubMed ID: 31499932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting the performance of quantum Otto heat engines.
    Chen JF; Sun CP; Dong H
    Phys Rev E; 2019 Sep; 100(3-1):032144. PubMed ID: 31640026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unified trade-off optimization of quantum harmonic Otto engine and refrigerator.
    Singh V; Singh S; Abah O; Müstecaplıoğlu ÖE
    Phys Rev E; 2022 Aug; 106(2-1):024137. PubMed ID: 36110016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. More bang for your buck: super-adiabatic quantum engines.
    del Campo A; Goold J; Paternostro M
    Sci Rep; 2014 Aug; 4():6208. PubMed ID: 25163421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomous quantum heat engine based on non-Markovian dynamics of an optomechanical Hamiltonian.
    Rasola M; Möttönen M
    Sci Rep; 2024 Apr; 14(1):9448. PubMed ID: 38658607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal efficiency of a noisy quantum heat engine.
    Stefanatos D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012119. PubMed ID: 25122263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of Quantum Heat Engines Enhanced by Adiabatic Deformation of Trapping Potential.
    Xiao Y; Li K; He J; Wang J
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieve higher efficiency at maximum power with finite-time quantum Otto cycle.
    Chen JF; Sun CP; Dong H
    Phys Rev E; 2019 Dec; 100(6-1):062140. PubMed ID: 31962481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction.
    Feldmann T; Kosloff R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016101. PubMed ID: 12935194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines.
    Sheng S; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting work characteristics and overall heat-engine performance via shortcuts to adiabaticity: quantum and classical systems.
    Deng J; Wang QH; Liu Z; Hänggi P; Gong J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062122. PubMed ID: 24483401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adiabatic Invariant Approach to Transverse Instability: Landau Dynamics of Soliton Filaments.
    Kevrekidis PG; Wang W; Carretero-González R; Frantzeskakis DJ
    Phys Rev Lett; 2017 Jun; 118(24):244101. PubMed ID: 28665662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum heat engine with coupled superconducting resonators.
    Hardal AÜC; Aslan N; Wilson CM; Müstecaplıoğlu ÖE
    Phys Rev E; 2017 Dec; 96(6-1):062120. PubMed ID: 29347310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.