These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 27627285)

  • 1. Spin-glass phase transitions and minimum energy of the random feedback vertex set problem.
    Qin SM; Zeng Y; Zhou HJ
    Phys Rev E; 2016 Aug; 94(2-1):022146. PubMed ID: 27627285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ground-state entropy of the random vertex-cover problem.
    Zhou J; Zhou H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):020103. PubMed ID: 19391695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability analysis on the finite-temperature replica-symmetric and first-step replica-symmetry-broken cavity solutions of the random vertex cover problem.
    Zhang P; Zeng Y; Zhou H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021122. PubMed ID: 19792092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying optimal targets of network attack by belief propagation.
    Mugisha S; Zhou HJ
    Phys Rev E; 2016 Jul; 94(1-1):012305. PubMed ID: 27575146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase transitions in the coloring of random graphs.
    Zdeborová L; Krzakała F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031131. PubMed ID: 17930223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of constraint relaxation on the minimum vertex cover problem in random graphs.
    Dote A; Hukushima K
    Phys Rev E; 2024 Apr; 109(4-1):044304. PubMed ID: 38755898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase transition for cutting-plane approach to vertex-cover problem.
    Dewenter T; Hartmann AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041128. PubMed ID: 23214550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Threshold values, stability analysis, and high-q asymptotics for the coloring problem on random graphs.
    Krzakała F; Pagnani A; Weigt M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046705. PubMed ID: 15600563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Random graphs with arbitrary degree distributions and their applications.
    Newman ME; Strogatz SH; Watts DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026118. PubMed ID: 11497662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robustness of random graphs based on graph spectra.
    Wu J; Barahona M; Tan YJ; Deng HZ
    Chaos; 2012 Dec; 22(4):043101. PubMed ID: 23278036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase transitions in the quadratic contact process on complex networks.
    Varghese C; Durrett R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062819. PubMed ID: 23848741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustering analysis of the ground-state structure of the vertex-cover problem.
    Barthel W; Hartmann AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066120. PubMed ID: 15697447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifurcations in the Kuramoto model on graphs.
    Chiba H; Medvedev GS; Mizuhara MS
    Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-range frustration in a spin-glass model of the vertex-cover problem.
    Zhou H
    Phys Rev Lett; 2005 Jun; 94(21):217203. PubMed ID: 16090343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple glass transitions and higher-order replica symmetry breaking of binary mixtures.
    Ikeda H; Miyazaki K; Yoshino H; Ikeda A
    Phys Rev E; 2021 Feb; 103(2-1):022613. PubMed ID: 33736072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse transitions in a spin-glass model on a scale-free network.
    Kim DH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022803. PubMed ID: 25353530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of the Lévy spin glass.
    Janzen K; Engel A; Mézard M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021127. PubMed ID: 20866795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are randomly grown graphs really random?
    Callaway DS; Hopcroft JE; Kleinberg JM; Newman ME; Strogatz SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041902. PubMed ID: 11690047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical mechanics of the minimum vertex cover problem in stochastic block models.
    Suzuki M; Kabashima Y
    Phys Rev E; 2019 Dec; 100(6-1):062101. PubMed ID: 31962393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replica symmetry broken states of some glass models.
    Yeo J; Moore MA
    Phys Rev E; 2023 Nov; 108(5-1):054134. PubMed ID: 38115428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.