These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27627306)

  • 21. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators.
    Selivanov AA; Lehnert J; Dahms T; Hövel P; Fradkov AL; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016201. PubMed ID: 22400637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of symmetry breaking in networks of globally coupled oscillators.
    Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052915. PubMed ID: 26066237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oscillation death in diffusively coupled oscillators by local repulsive link.
    Hens CR; Olusola OI; Pal P; Dana SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):034902. PubMed ID: 24125390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transitions among the diverse oscillation quenching states induced by the interplay of direct and indirect coupling.
    Ghosh D; Banerjee T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062908. PubMed ID: 25615165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oscillation quenching and phase-flip bifurcation in coupled thermoacoustic systems.
    Dange S; Manoj K; Banerjee S; Pawar SA; Mondal S; Sujith RI
    Chaos; 2019 Sep; 29(9):093135. PubMed ID: 31575137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of frequency mismatch on amplitude death in delay-coupled oscillators.
    Mizukami S; Konishi K; Sugitani Y; Kouda T; Hara N
    Phys Rev E; 2021 Nov; 104(5-1):054207. PubMed ID: 34942770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fading of remote synchronization in tree networks of Stuart-Landau oscillators.
    Karakaya B; Minati L; Gambuzza LV; Frasca M
    Phys Rev E; 2019 May; 99(5-1):052301. PubMed ID: 31212500
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchical transitions in multiplex adaptive networks of oscillatory units.
    Maslennikov OV; Nekorkin VI
    Chaos; 2018 Dec; 28(12):121101. PubMed ID: 30599540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Partial synchronization and partial amplitude death in mesoscale network motifs.
    Poel W; Zakharova A; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022915. PubMed ID: 25768577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reviving oscillations in coupled nonlinear oscillators.
    Zou W; Senthilkumar DV; Zhan M; Kurths J
    Phys Rev Lett; 2013 Jul; 111(1):014101. PubMed ID: 23863001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental observation of a transition from amplitude to oscillation death in coupled oscillators.
    Banerjee T; Ghosh D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062902. PubMed ID: 25019846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-delay effects on the aging transition in a population of coupled oscillators.
    Thakur B; Sharma D; Sen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042904. PubMed ID: 25375564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of amplitude chimeras by time delay in oscillator networks.
    Gjurchinovski A; Schöll E; Zakharova A
    Phys Rev E; 2017 Apr; 95(4-1):042218. PubMed ID: 28505829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators.
    Dodla R; Sen A; Johnston GL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056217. PubMed ID: 15244914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transition from homogeneous to inhomogeneous limit cycles: Effect of local filtering in coupled oscillators.
    Banerjee T; Biswas D; Ghosh D; Bandyopadhyay B; Kurths J
    Phys Rev E; 2018 Apr; 97(4-1):042218. PubMed ID: 29758758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generalizing the transition from amplitude to oscillation death in coupled oscillators.
    Zou W; Senthilkumar DV; Koseska A; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):050901. PubMed ID: 24329205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing coherence via tuning coupling range in nonlocally coupled Stuart-Landau oscillators.
    Zhao N; Sun Z; Xu W
    Sci Rep; 2018 Jun; 8(1):8721. PubMed ID: 29880922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum manifestations of homogeneous and inhomogeneous oscillation suppression states.
    Bandyopadhyay B; Khatun T; Biswas D; Banerjee T
    Phys Rev E; 2020 Dec; 102(6-1):062205. PubMed ID: 33465997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amplitude death in nonlinear oscillators with mixed time-delayed coupling.
    Zou W; Senthilkumar DV; Tang Y; Wu Y; Lu J; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032916. PubMed ID: 24125334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of coupling parameters for inducing amplitude death in Cartesian product networks of delayed coupled oscillators.
    Sugitani Y; Konishi K
    Phys Rev E; 2017 Oct; 96(4-1):042216. PubMed ID: 29347511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.