These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 27627306)
41. Additional repulsion reduces the dynamical resilience in the damaged networks. Bera BK Chaos; 2020 Feb; 30(2):023132. PubMed ID: 32113231 [TBL] [Abstract][Full Text] [Related]
42. Stable and transient multicluster oscillation death in nonlocally coupled networks. Schneider I; Kapeller M; Loos S; Zakharova A; Fiedler B; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052915. PubMed ID: 26651770 [TBL] [Abstract][Full Text] [Related]
43. Revival and death of oscillation under mean-field coupling: Interplay of intrinsic and extrinsic filtering. Kumar K; Biswas D; Banerjee T; Zou W; Kurths J; Senthilkumar DV Phys Rev E; 2019 Nov; 100(5-1):052212. PubMed ID: 31870041 [TBL] [Abstract][Full Text] [Related]
44. Explosive death in nonlinear oscillators coupled by quorum sensing. Verma UK; Chaurasia SS; Sinha S Phys Rev E; 2019 Sep; 100(3-1):032203. PubMed ID: 31640010 [TBL] [Abstract][Full Text] [Related]
45. Master stability islands for amplitude death in networks of delay-coupled oscillators. Huddy SR; Sun J Phys Rev E; 2016 May; 93(5):052209. PubMed ID: 27300882 [TBL] [Abstract][Full Text] [Related]
46. Aging transition in mixed active and inactive fractional-order oscillators. Sun Z; Liu Y; Liu K; Yang X; Xu W Chaos; 2019 Oct; 29(10):103150. PubMed ID: 31675845 [TBL] [Abstract][Full Text] [Related]
47. Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment. Zou W; Sebek M; Kiss IZ; Kurths J Chaos; 2017 Jun; 27(6):061101. PubMed ID: 28679221 [TBL] [Abstract][Full Text] [Related]
48. Frequency discontinuity and amplitude death with time-delay asymmetry. Punetha N; Karnatak R; Prasad A; Kurths J; Ramaswamy R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046204. PubMed ID: 22680553 [TBL] [Abstract][Full Text] [Related]
49. Eliminating delay-induced oscillation death by gradient coupling. Zou W; Yao C; Zhan M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056203. PubMed ID: 21230559 [TBL] [Abstract][Full Text] [Related]
50. Bistability in two simple symmetrically coupled oscillators with symmetry-broken amplitude- and phase-locking. Röhm A; Lüdge K; Schneider I Chaos; 2018 Jun; 28(6):063114. PubMed ID: 29960415 [TBL] [Abstract][Full Text] [Related]
51. Mobility and density induced amplitude death in metapopulation networks of coupled oscillators. Shen C; Chen H; Hou Z Chaos; 2014 Dec; 24(4):043125. PubMed ID: 25554045 [TBL] [Abstract][Full Text] [Related]
53. Delay-induced amplitude death in multiplex oscillator network with frequency-mismatched layers. Konishi K; Yoshida K; Sugitani Y; Hara N Phys Rev E; 2024 Jan; 109(1-1):014220. PubMed ID: 38366515 [TBL] [Abstract][Full Text] [Related]
54. Amplitude chimera and chimera death induced by external agents in two-layer networks. Verma UK; Ambika G Chaos; 2020 Apr; 30(4):043104. PubMed ID: 32357668 [TBL] [Abstract][Full Text] [Related]
55. Quenching of oscillation by the limiting factor of diffusively coupled oscillators. Manoranjani M; Senthilkumar DV; Zou W; Chandrasekar VK Phys Rev E; 2022 Dec; 106(6-1):064204. PubMed ID: 36671171 [TBL] [Abstract][Full Text] [Related]
56. Amplitude-mediated chimera states in nonlocally coupled Stuart-Landau oscillators. Bi H; Fukai T Chaos; 2022 Aug; 32(8):083125. PubMed ID: 36049944 [TBL] [Abstract][Full Text] [Related]
57. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks. Wang Z; Campbell SA Chaos; 2017 Nov; 27(11):114316. PubMed ID: 29195320 [TBL] [Abstract][Full Text] [Related]
58. Oscillation suppression in indirectly coupled limit cycle oscillators. Kamal NK; Sharma PR; Shrimali MD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022928. PubMed ID: 26382496 [TBL] [Abstract][Full Text] [Related]
59. Disordered quenching in arrays of coupled Bautin oscillators. Emelianova AA; Maslennikov OV; Nekorkin VI Chaos; 2022 Jun; 32(6):063126. PubMed ID: 35778140 [TBL] [Abstract][Full Text] [Related]